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Chapter 1

Introduction

1.1 Brief history of (an)harmonic lattice dynamics
It is hard to argue that the field of ab initio study of solid-state physics starts with seminal works of
Kohn, Sham and Hohenberg [1, 2], establishing Density Functional Theory (DFT) in the 1960s. They
provided the tools to overcome the exponential barrier intrinsic in quantum systems of correlated par-
ticles. However, the possibility of simulating real materials remained limited until the 1980s, when the
development of good “universal” approximations for the density functional [3, 4] and the revolution
of computer technology allowed the simulation of real materials with no additional approximation or
empirical parameters.

In a similar way, the theory of lattice vibration was already textbook matter in the 1950s, with a well
established theoretical basis [5–7]. However, it wasn’t until the 1970s that the calculation of the vibra-
tional “Dynamical matrix” from atomic interactions had been attempted [8, 9]. In the 1980s the synergy
between theory and computer science allows the ab initio calculation of vibrations in solids via density
functional perturbation theory (DFPT) [10, 11].

Similarly, the interpretation of thermal conductivity in terms of nanoscopic processes involving heath-
carrying “particles” (which where not immediately identified as electrons or phonons) is more than one
century old [12], however the interpretation in terms of harmonic vibrations (phonons) and limited by
anharmonic interaction was the initial work of Peierls in the 1930s [13], who developed the linearized
Boltzmann Transport Equation (BTE):

∂nqj
∂t

∣∣∣∣
scatt

= cqj
∂T

∂x

(
∂nqj
∂T

)
. (1.1)

The time time derivative of the phonon population nqj due to scattering, has to be equal to its temperature
derivative, multiplied by the temperature gradient ∂T/∂x (assumed to be in the direction x) and the
phonon group velocity cqj . The indexes q and j refer to the phonon momentum and its band index
respectively.

In order to have predictive power, this theory requires two important elements which were not yet
available: the energy/velocity dispersion of the heath carriers, i.e. cqj = ∇qωqj , where ω is the phonon
frequency, and their scattering probability. As we have just seen, phonon dispersions have been routinely
available via commercial or open-source softwares since the late 1980s, but the latter could only been
computed for low-energy acoustic phonons using painfully complicated analytic models [14–16]. The first
order perturbative equation for the scattering probability P fi is not complicated in itself:

P fi (qj,q′j′,q′′j′′) = 2π
~

∣∣∣〈i | V (3)(qj,q′j′,q′′j′′) | f〉
∣∣∣2 δ(Ei − Ef ). (1.2)

Where i and f are the initial and final state. What is “hard” to compute is the matrix element of
the phonon-phonon interaction, V (3), which is proportional to the third derivative of the total energy
with respect to three phonons qj, q′j′ and q′′j′′. Apart from that, there is the condition that the total
momentum and energy are conserved, which can be imposed in two different ways depending on the
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Figure 1.1: The two possible first order anharmonic process of intrinsic phonon scattering: on the left
the coalesence of to phonons to one, on the right the scattering of on phonon into two.

process. For the “coalescence” of two phonons into one it is q + q′ − q′′ = G, Ei = ~ωqj + ~ωq′j′

and Ef = ~ωq′′j′′ ; for the “scattering” of one phonon into two, it is q − q′ − q′′ = G, Ei = ~ωqj and
Ef = ~ωq′j′ + ~ωq′′j′′ . Because we are in periodic boundary condition, the wavevectors q are actually
crystal momentum, which is defined and conserved minus a reciprocal lattice vector G.

The two process are shown, more intuitively, in a diagrammatic way in Figure 1.1. More details about
this theory, including and expression for the intrinsic phonon lifetime, are in Section 2.3.

The way to compute the matrix element with DFPT was initially opened by Gonze et al. [17] who gave a
functional formulation of the “2n+1” theorem. It states that if the wavefunctions derivatives are known
up to order n, it is possible to compute the derivative of the total energy up to order 2n+ 1, at a limited
computational cost. This method has been initially implemented only for zone-centered interactions (i.e.
when one of the three phonons colliding has vanishing wavevector) [18], this gives access to the calculation
of the linewidth (and its inverse, the lifetime) of phonons with wavevector Γ = (0, 0, 0). It is enough for
studying the linewidth of Raman or Infrared spectra, but does not allow the simulation of collective
phonon dynamics, such as thermal transport.

In the years 2000s, a few research groups have generalized these results, and were able to calculate
the phonon-phonon scattering terms for generic wavevectors, but limited to simple systems, such as
cubic insulators and semiconductors [19, 20]. Later on, other groups developed methods based on finite
differences derivation which, thanks to the progress in computational power, could tackle more complex
problems [21, 22], or hybrid approaches that used “2n+1” in conjunction with supercells [23, 24]. I
developed, in 2010-2013, a general “2n+1” implementation, capable of dealing with insulators and metals,
arbitrary geometries, and standard density functional approximations [25].

Even with the phonon-phonon matrix elements known exactly, solving the BTE remains a serious task.
The most common approach was, and still is, the Single-Mode Approximation (SMA). Under this approx-
imation, it is assumed that when a phonon undergoes a scattering event, its energy is distributed among
all the modes according to the Bose-Einstein occupation. The expression is simple and intuitive:

κlatt,αβ = 1
V

∑
qj

~ωqj
∂nqj
∂T

cqj,αcqj,βτqj (1.3)

Where the lattice thermal conductivity κlatt, along Cartesian direction α, under the effect of a temperature
gradient along direction β is a sum of the phonon energies ~ωqj , their lifetime τqj and the (analytical)
derivative of the equilibrium Bose-Einstein population. Typically given per unit of volume, dividing by
the unit cell volume V .

This approximation is sufficiently accurate for most materials, at room temperature and above, but
breaks down at low temperature (10k-100K depending on the material) and, critically, for low-dimensional
materials, such as graphene or mono-layer transition-metal dichalcogenides1. The reason is that scattering
event can be divided in two categories: normal scattering were conservation of momentum is exact, and
umklapp scattering, where momentum is conserved minus a reciprocal lattice vector, i.e. the so-called
“crystal momentum” is conserved, but real momentum is not. Normal scattering does not impede thermal
transport, it only causes phonon to “push each other” but always in the direction of the temperature
gradient. At sufficiently high temperature it is Umklapp scattering that dominates, for simple geometrical
reasons, causing all the phonons to interact in a collective way, consistent with SMA. But at very low

1XY2, with X=Mo or W and Y=S, Se or Te.
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temperature, when only the phonons close to Γ are occupied, this does not hold. This is especially true
for light materials, as the linear part of the acoustic phonons extend up to higher energies.

In the late 1990, the group of Sparavigna developed a method to solve the Boltzmann transport equation
exactly, using an iterative algorithm, which, despite being expensive and sometimes difficult to con-
verge, could be used to produce accurate results for the low-temperature conductivity of some simple
materials [26–28].

I participated in the development of a novel approach, which recasts the BTE as the minimization of a
quadratic form [29, 30]. This new method, is still one or two orders of magnitude more expensive than
standard SMA, but it converges quickly and reliably, and can be easily extended to include extrinsic
effects (isotope scattering, sample boundaries) which are often dominant at very low temperature. This
innovative approach also allowed to predict different “regimes” of thermal transport with very different
characteristics: (1) ballistic regime, when intrinsic scattering is negligible (2) hydrodynamic regimes, when
phonon interact non-dissipatively (3) diffusive regime, when intrinsic dissipative scattering is dominant.
This picture has since been further extended into a more general approach to heath-transport, based on
heath-carrying quasi-particles (baptised “relaxon”) can have, in the hydrodynamic regime, a longer mean
free path (MFP) than phonons, producing the so-called “second sound” phenomenon, i.e. heath carried
as a wave [30, 31]. The most recent advancements include a generalized transport equation, which takes
into account in an elegant formulation both diffusive transport, typical of crystals, and the incoherent
“tunneling” transport mechanism of glasses [32].

1.2 Beyond the phonons with anharmonic perturbations
It may seem at this point, that the approach of harmonic lattice vibrations with anharmonic interactions
is able to treat any solid material: hot or cold, crystal or glass, weakly or strongly anharmonic, and
that the only limitation is the computing time required to simulate larger unit cells. However, there is
an entire class of problems where all this picture breaks down. It is the case of temperature stabilized
and meta-stable materials, and, in general, the proximity of second order phase transitions. These
problem cannot be solved with the standard approach because harmonic phonons present instabilities,
i.e. imaginary frequencies at the DFPT level: any small perturbation would push the system toward the
phase transition. On the other hand, it is well known that some systems, especially higher symmetry
phases, are stabilized by temperature: they are unstable at the DFPT level, because the curvature of
the total “static” energy is negative around the high-symmetry configuration, but becomes positive (i.e.
stable) if one takes into account the various vibrational contributions: zero point energy of phonon modes,
their kinetic energy and entropy. We also know, from experiments, that these systems have well defined
phonon bands, which may however present strong anharmonic features such as asymmetries and satellite
peaks. I will show in Section 2.6 how these complex spectral function can be simulated.

In order to treat this class of problems, there has been in the years 2010s the emergence of several methods
based on a philosophy that could be called “temperature-dependent phonons” (TDP) In Chapter 4.1 I’ll
give a more complete review of these techniques [33–45] For this chapter, it suffice to say what they
have in common. All these methods compute the fore constants as a thermodynamic average, i.e. a
sum of the thermodynamic ensemble. This sum is invariably replaced with a sampling, either stochastic
or dynamic, of the momentum-position phase space. Each method uses its own unique way to extract
temperature-dependent interatomic force constants up to a certain order. At quadratic order, one obtains
“renormalized” phonons, which can be stable when zero-temperature DFPT phonons are not. Higher
orders can also be estimated, to re-introduce anharmonic effects, typically at a higher computational
cost. Linear order can be considered vanishing, if the sampling is done around the equilibrium lattice
structure, or included, to estimate temperature-dependent forces and perform structural relaxation. Each
method has its own strengths and weaknesses which make it more or less suitable to treat specific corner
cases: quantum motion of nuclei, phase transitions, low-symmetry systems. The main advantage, is that
from force constants one can recover the familiar quasi-particle picture, and can use all the standard
tools based of Peierls BTE theory. On the other hand, they all share a main drawback: they give up
the universality of “harmonic” phonons, i.e. these renormalized phonons cannot be considered a simple
property of the material. Instead of being just progressively occupied with a temperature-dependent
Bose-Einstein distribution, phonons become explicitly temperature-dependent.

I have contributed to the development of two of these methods: the Self-Consistent Stochastic Approxi-
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mation [41] and quantum-correlators (QC) with PIMD [37], I have also supervised the implementation of
a third method, a novel reciprocal-space implementation of the temperature-dependent effective poten-
tial method (TDEP) [44, 46] with an efficient sampling based on Langevin dynamics [47]. These three
methods have complementary strengths: rigorous derivation of temperature-dependent internal forces
and stress for SSCHA, resilience to quantum noise, even at sub-K temperatures, for QC and simple
accounting of different symmetries, i.e. of competing phases, for TDEP. Thus they form a formidable
combination that can tackle problems as disparate as hydrogen-rich metal substrates [48] or high-pressure
and high-temperature Hearth mantle conditions [49, 50].

I also have to acknowledge the recent developments of thermal transport simulation via equilibrium
molecular dynamics (EMD) based on the Green-Kubo formula (GK), which completely drop the phonon
quasiparticle. As little as 5 year ago, this approach seemed impossible to apply in periodic boundary
conditions (PBC), because of the well-known problem of the position operator r being ill-defined [51],
as it appears in the definition of the energy flux Jε(t) =

´
ε̇(r, t)rdr. Where t is time, and ε̇ the time

derivative of the energy density. Defining the energy density is a problem in itself, but what is worst
is that any naive definition of the current in PBC depends on the arbitrary choice of the origin of the
coordinate system. Two complementary approaches have been published independently, one based on
response function, which is suitable to describe all kind of currents: energy, charge or mass [52] in crystals,
glasses and even liquids. The other is based on the virial theorem, assumes that mass current is zero
to derive a gauge-invariant definition of the flux [53]. The former is more powerful, the latter simpler
but equally good for solids. They both employ large supercells to take into account heath transport
from carriers which have long mean-free paths, such as the relaxons in 2D materials or phonons at low
temperature, they are thus more suitable for application at high temperature, or relatively disordered
systems.

There are two common problems to all these advanced methods, based on TDP or EMD-GK: the long
correlation time of NVE molecular dynamics, and the failure to reach ergodicity, i.e. to explore all
the phase space, which tends to emerge when approaching a phase transition. The first problem arises
because subsequent steps of a trajectory are very similar to each other, and thus do not provide much
more information, the root cause is that a fine integration of the time axis is required to properly take
into account high frequency vibrations (rigid bonds). It is customary to take a time step shorter than the
inverse frequency of the highest phonon. The failed ergodicity problem occurs when a system approaches
the transition toward a lower-symmetry phase. Its potential energy landscape will form several minima,
separated by barriers which are initially lower than the thermal excitation kBT . MD trajectories will
tend to stick to a minima as crossing the barrier becomes an increasingly rare event, soon out of the reach
of any simulation [54]. The result, if symmetry is imposed (an almost universal feature of TDP methods),
can be to impede the phase transition by forcing the phonon dynamical matrix to have more symmetry
than the systems. It is less evident, but even methods based on stochastic phase-space sampling suffer
the same problem, as a very fine sampling is required to find the transition pathway. Even for simple
systems, there is an effects on the reliability of simulations, for example, at least three different transition
mechanisms have been proposed for the SnSe transition from high-symmetry Cmcm to low-symmetry
Pnma by groups using different TDP methods [55–57].

1.3 State of the art and methodological development
In light of what has been said in the previous section, I will argue that combining TDP methods with the
most advanced MD techniques, for example Metadynamics [54] and Langevin dynamics [37] is a necessary
step to overcome the limitations of current methods, I am already supervising two students that work in
this direction, with two different strategies [46, 50].

The combination of the TDEP method with Langevin dynamics (LD) is the first approach. LD is a smart
way to run temperature-controlled dynamics, (NVT from the conserved quantities: Number of particles,
Volume, Temperature), where the role of the thermostat is fulfilled by stochastic forces that are applied
with a distribution compatible with the required temperature. In parallel, a damping force is applied,
which exponentially erases the trajectory history, guaranteeing a very short auto-correlation time between
subsequent steps. The actual values can vary, and depend on the parameter choices, but can typically
be between 2 and 5 MD steps. Another way to see LD is as a Markov chain process [58], where instead
of rejecting or accepting new steps, depending on their energy, like in the Metropolis algorithm, we can
reach 100% acceptance by exploiting the knowledge of the gradient of the free-energy landscape, i.e. the
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ab initio forces acting on the atoms. It is useful to note that even in the normal Metropolis algorithm,
where there is no history, there is an auto-correlation time, as the acceptance test probability depends
on the energy of the last accepted step.

The main disadvantage of LD is that trajectories can be unphysical, especially if the damping factor is
too high and that it does not have a simple conserved quantity to be monitored during the run. But these
problems can be overcome with a carefully crafted “integrator”, i.e. an approximation of the Liouvillian
operator in the Fokker-Plank equation [59] that determines the motion of the atoms. For our applications,
we can simply observe that we are more interested in the sampling than in the actual trajectory, we can
accept these trade-offs in exchange for its efficiency and ergodicity, which have widely been proven.

In order to take into account the quantum motion of nuclei, we can use the well-established Path-Integral
Molecular Dynamics (PIMD) technique. In this method, many copies of the system under consideration
are simulated simultaneously, in addition to the physical internal forces, one introduces fictitious elastic
strings that connect the different replicas. The details of the coupling and the selection of the elastic
constants depends on the exact flavour of PIMD, of which many exist [47, 60, 61]. In the PIMD jargon,
the ensemble of replicas is referred as a “ring”, “polymer” or even “necklace”, while the individual replica
is called a “bead”.

Furthermore, we are interested in coupling LD with PIMD, this technique is also established as the Path
Integral Langevin Equation (PILE) [47, 62]. Where we want to innovate, is to combine PILE with TDEP
to solve its two main drawbacks: the high computational cost required for a sufficient sampling of the
phase space using long-correlation time standard NVE MD (conserved quantities: Number of particles,
Volume of the unit cell, total Energy) and the inconsistency between using classical dynamic of the
nuclei to fit a quasi-particle based model, adding quantum nuclei effects, such as zero-point vibration
and Bose-Einstein occupation, only a posteriori. In the worst case, where the nuclei dynamics is in
fact classical, the use of PIMD technique can accelerate the sampling, by exploring more configurations
simultaneously.

As a second step along this direction, we will try to interpret the vibrational properties of disordered
non-stoichiometric crystal and minerals, which is a problem of great interested for the geological sciences,
but could also have application to the vast field of metal alloys and to the study of phase-change mate-
rials, where the same crystal site can be occupied by different species, sometimes leading to amorphous
structures [63, 64]. As a benchmarks for our approach we can take, for example, disordered SiGe which
has already been studied with different methods [23]. The common difficulty of these systems is that,
despite being disordered, they are more similar to crystals than to glasses, as they have a well defined
lattice geometry and only the occupancy of the lattice sites can vary, more often by two similar chemical
species.

Simulating this systems with a supercell in periodic boundary conditions meets two limitation: on one
hand, long-range order is introduced which could favour long-range vibrations. On the hand other,
taking into account all possible permutations and their disorder entropy is a tedious and error-prone
task. A Monte Carlo approach can be used, either in a grand-canonical or, more easily, by exchanging
compatible ions keeping the stoichiometric constant. Combining this kind of sampling with a ab initio
dynamics is a not-trivial and, to the best of ou knowledge, novel approach. TDEP can then be applied
on the generalized trajectories to extract “average” phonons, which are similar, in spirit to what could
be obtained from a virtual crystal approximation, but without the drastic assumption of this simple
model [65]. The scattering probability of phonon with disorder can be put back in the picture using either
effective models, or establish an external collaboration to employ the more advanced non-equilibrium
Green function method (NEGF) method [66].

A development which I am pursuing on a different direction is the extension of the QC method to
obtain an expression for 3rd and possibly 4th order force constants. This would allow us to construct a
coherent model that predict not only renormalized phonon frequencies but also their lifetimes, and thus
the thermal transport properties. This would allow a perturbative, but exact, prediction of lattice thermal
conductivity even in extreme cases such as hydrogen-rich materials down to cryogenic temperatures, with
important applications to the quickly developing field of high-pressure superconductivity [67, 68]. The
main advantage of the QC method with respect to TDEP is a more rigorous formulation. As I will discuss
in Section 4.1, TDEP promises to return the best harmonic phonons for a given system and temperature,
but the definition of “best” is debatable. To understand this issue we can compare TDEP and SSCHA:
TDEP minimizes the difference between the “harmonic” forces, which are obtained from two-body force
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constants and the the ab initio forces, sampled by the MD. If the method is extended to third order,
the residual force is again fitted wiht 3-body force constants, which produce cubic terms. Conversely,
the SSCHA method uses a variational approach, the best force constants are those that minimize the
free energy. It can be shown that under some conditions, the harmonic level of TDEP and SSCHA are
equivalent [69]. This however depends on the sampling used, and is not evident when they are extended
to include third or fourth order, and will deserve further investigation.

The QC method attacks the problem from a completely different angle. It is an established result in
classical statistical mechanics that the instantaneous force fluctuation (i.e. the thermal average of the
instantaneous force-force correlation) and the thermodynamic average of the force constants are equal,
this approach is exact beyond perturbation theory [70]. In equation terms:

〈FiFj〉 = kBT

〈
∂2E

∂xi∂xj

〉
(1.4)

, where on the left-hand side Fi (Fj) is the force acting on atom with index i (j) in the simulation cell, and
< . . . > indicates the average over the statistical ensemble. on the right-hand side T is temperature and kB
is the Boltzmann constant and the force constant associated with atoms i and j, i.e. the partial derivative
of the total energy E with respect to the displacements xi and xj . One can derive, with a linearization
linearization, a similar expression for force constant from the autocorrelation function of the displacements
〈xixj〉 = kBT

(〈
∂2E

∂xi∂xj

〉)−1
. A third expression, that can be derived for the velocities autocorrelator

〈ẋiẋj〉, corresponds to the well known principal mode analysis method [71]. Further derivation produces
a generalized eigenvalue equation that describes the vibrational spectrum even for out-of-equilibrium
systems. The quantum case is more cumbersome to derive, but finally reduces to similar expressions,
where the averages have to performed also over the PIMD beads. Furthermore, in the quantum case, the
linearization involved in the position autocorrelation expression is not an approximation, as it be shown
to return exactly not the phonon frequency, but the oscillator first excitation energy. The two are only
equal in the perfectly harmonic case, where the eigenvalues are equally spaced [37].

The strengths of this approach, combining QC with PILE are various. First, it has a rigorous derivation,
where no arbitrary choice is made to favour one harmonic renormalization. Second, because of the
stochastic component of the Langevin thermostat, it is resilient to noisy forces, which means that it can
be combined with non-deterministic Quantum Monte Carlo (QMC) simulations of the electronic degrees
of freedom, and in general may suffer less from numerical noise. Last, but not least, the entire chain
of operation takes into account the full quantum properties of nuclei motion. These three properties
are extremely important when targeting the sub-chemical accuracy, required to model hydrogen-rich
systems.

There are however, many open questions. We know that, in the classical case, the force-force expression
can be extended to third order, i.e. that also this equality holds: 〈FiFjFk〉 = kBT

〈
∂3E

∂xi∂xj∂k

〉
. However,

we do not know if this is true for the quantum formulation, and we do not have an expression for the
fourth order in neither the classical nor the quantum case. Exploring this points will for sure be a tasks
of the next few years.

Summarizing, these are the main research projects: improve the TDEP by using LD sampling, extend the
it to tackle disordered “entropic” crystals, and establish in a more formal way its link with the SSCHA
method, which would reap the benefit of its variational formulation. Extend the correlators approach to
compute higher order of force constants, especially when quantum dynamics are used.

1.4 Past and future of applications
Having at disposal a complete theory and a set of numerical tools has opened the path to numerous
applications in disparate fields of condensed matter physics, for example: (1) pure research studies of
the peculiar properties of ideal low-dimensionality materials, (2) strongly anharmonic thermoelectric ma-
terials, (2) simulation of hyper-acoustic sound waves, (3) simulation of vibrational spectra and thermal
transport of natural minerals at extreme temperature and pressure conditions of geological interest, and
(4) simulation of vibrational spectra of synthetic meta-stable materials to guide structure identifica-
tion.
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1.4.1 Bidimensional materials
The theoretical study of bidimensional materials can give answers that are difficult to obtain from ex-
periments: real graphene samples are always either deposed on some substrate, and thus affected by its
interaction, or suspended, and affected by some amount of strain. When they are probed, even a modest
accumulation of heath can cause local straining and buckling. It is not a surprise that ab initio theory has
played a fundamental role in the interpretation of data. The first application of my work on the phonon
linewidth and lattice thermal conductivity of graphene came a few years after the first measurements of
thermal transport in suspended graphene [72, 73], and confirmed that the bidimensional material could
have a record-high conductivity, even higher than that of bulk graphite. It also showed that the SMA
was probably not a good approximation for this system, as the absolute value was quite underestimated,
we though initially because of the very long lifetime of the quadratic acoustic band [25]. Research beyond
this approximation was already in progress, with the development of a new method to solving the BTE
with a variational formulation: a matrix of all the possible phonon-phonon interaction probabilities is
constructed from first principles, then the variation of the phonon population is linearized around the
equilibrium Bose-Einstein distribution and a minimization finds the perturbation that makes the BTE
stationary. In intuitive terms: the heath-carrying steady state is reached when the incoming and outgoing
scattering of each phonon state are at equilibrium. A numerical solution was still an important challenge,
which required expertise in the treatment of extrinsic effects (scattering with isotopic disorder, borders)
and numerical optimization.

Three applications followed shortly: first, as a showcase, we could reproduce the thermal conductivity
of simple and isotope-pure diamond (100% 12C) with great accuracy, down to a few K and taking
into account the sample size [29]. The second and third application [30, 74] went back to bidimensional
materials, and showed the presence of collective heath-carrying modes, exhibiting mean free paths (MFP)
potentially unlinked from those of individual phonons. Furthermore, we showed that an universal property
of bidimensional materials is the presence, in a wide temperature range, of an “hydrodynamic” regime,
where phonon interacts non-dissipatively, and can carry heath as a wave i.e. the famous “second sound”
wave that had previously only been observed in liquid-helium cooled Bi or NaF2. On the other hand, in
most 3D materials, it is extrinsic scattering, linked to impurities and sample geometry that determines
the maximum of low-temperature thermal transport, as schematized in Figure 1.2. Second sound was
eventually measured in graphite several years later at 120 k and then 200 K [75, 76], but only over
micrometer lengths. Its presence in graphene has still to be confirmed by experiment.

An important advantage of ab initio techniques is that they let one gain some insight about the mi-
croscopic heath-transport mechanism, a knowledge that one could use to tune the transport properties.
Tuning the phonon dispersion is not necessarily a trivial task, but we did propose some an idea based on
nanostructuring to reduce thermal conductivity of Bismuth, in a later collaboration [77].

The parts of this research where my contribution as been more extensive are reported in Sections 2.3
and 2.4, with technical details of the theory in Appendix C.

1.4.2 Anharmonic phonon spectra
It is a recurring need of experimental groups to interpret the vibrational spectra coming from Infrared
(IR), Raman, Inelastic X-Ray scattering (IXS) or Neutron scattering (INS) measurements. IR and Raman
only probe zone-center modes, i.e. modes of vanishing crystal momentum, while IXS and INS can access
modes of arbitrary q-vector. Not all peaks are IR and Raman active, in simple crystals they can be
identified by symmetry, but in more complex materials two active modes can have very different cross
sections, resulting in not all of them being visible in the measurements. These cross sections can be
computed ab initio in the static long wavelength limit from response functions: the response to one zone-
center phonon and one electric field is called the “effective charge” of an atom, and it gives access to the IR
cross-section; the response to one phonon and two electric fields give access to the Raman tensor [80]. A
more complex case, is the simulation of resonant Raman, when the probing laser activates electronic and
vibrational excitations, which usually requires and ad-hoc treatment [81]. For IXS and INS scattering, the
cross section depends on the projection of the probing wavevector on the phonon polarization, weighted
with element-specific form-factors, which depend on the nuclei and deep core electronic structure.

2the peculiarity of these materials is that their chemical elements have a single stable isotope, and that they
can be obtained in large single crystals, allowing the intrinsic scattering effects to be dominant down to very low
temperature
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Figure 1.2: Thermal conductivity of a graphene ribbon of width L=100 µm (κL, solid line) together
with its ballistic limit (dashed), and of an infinite graphene sheet (κ∞, dashed line). Inset: thermal con-
ductivity regimes in a standard 3D solid, where peak conductivity is obtained at cryogenic temperatures
and the hydrodynamic conditions, if present, are confined around those temperatures. Regimes are as
follow. Ballistic: only scattering with interfaces has a significant role. Poisseuille: the dominant scatter-
ing effects are extrinsic (defects, sample borders). Ziman (or Hydrodynamic): intrinsic (phonon-phonon
) non-dissipative effects are dominant. Kinetic (or Diffusive): dissipative intrinsic scattering dominates.
From Reference 30.

(a) PdD 295 K (b) PdT 80 K

Figure 1.3: Spectral weight of (a) PdD (Palladium Deuteride) at 295 K compared with experimental INS
measurements for PdD0.63 [78] and (b) PdT (Palladium-Tritium) at 80 K as a function of momentum
and of energy compared with PdT0.7 [79]. Figure from Reference 48.
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(a) MgO IR optical conductivity (b) Final state of (*) peak at 300 K

Figure 1.4: (a) Experimental (symbols) and theoretical (lines in the upper inset) optical conductivity of
MgO at 300 and 873 K. The bottom inset shows the corresponding measured infrared reflectivity spectra
(symbols) together with the theoretical reflectivity foreseen in the harmonic approximation (HA) (black
lines). Stars (*) indicate the position of the secondary peak. (b) Final state decomposition of (*) peak
from Figure a, i.e. the phonons contributing to double-excitation event of the peak, isovalue plot at 10%
of the maximum. Colors correspond to different bands (yellow and green are acoustic, blue is optical).
Figures from Reference 49.

It is also possible that the experimental probe excites more than one phonon at the same time. For
example the laser light used in IR and Raman can excite two phonons with opposing q-vector. This
gives rise to second-order peaks, which can extend up to twice the Debye frequency, or under the lowest
harmonic phonon, and cannot be interpreted from symmetry alone. The cross section of the probe-matter
interaction, for an arbitrary momentum and frequency is remarkably independent on the kind of probe;
if we ignore the specific form factors, it is proportional to the “spectral weight” σ(qj,Ω) [79]:

σ(qj,Ω) = 2ω(qj)Γ(qj,Ω)
(Ω2ω2(qj)− 2ω(qj)∆(qj,Ω))2 + 4ω2(qj)Γ2(qj,Ω)

. (1.5)

The spectral weight σ9qj,Ω) is developed perturbatively on top of phonon qj of unperturbed energy
ω(qj); Ω is the energy of the probe, q the momentum of the probe and, because of conservation, of
the phonon; j is the band index that determines its polarization. The functions ∆(qj,Ω) and Γ(qj,Ω)
are respectively the real and imaginary parts of its frequency-dependent self-energy. The method I have
developed for computing phonon lifetimes gives access, with a trivial extension, to functions ∆ and Γ,
and thus to the simulation of the full anharmonic spectral weight. At the perturbative level the spectra
weight retains the characteristics polarization and symmetry of its associated phonon, which makes it
easy to combine it with the standard form factor.

Our first application of this method was to simulate the vibrational spectra of Palladium Hydride (PdH),
a material considered promising for stocking or filtering hydrogen, and particularly difficult to study
because the nuclei of hydrogen move in a shallow potential, where both anharmonicity and quantum
effects are important. We combined the calculation of stochastic self-consistent phonons (SSCHA) with
the spectral-weight from the perturbative self energy, to reproduce existing INS measurement with great
accuracy, including isotope dependency, i.e. the effect of replacing hydrogen with deuterium or tritium,
as see in figure 1.3. More details on this application are reported in Section 2.6.

Later on, we realized how simulating the spectral weight could explain secondary peaks in IR spectroscopy
measurements of minerals. The first application was MgO, an “end mineral” of Earth mantle, i.e. one of
the simple minerals that participate in the complex blend of the mantle. Using synchrotron radiation, it
is possible to perform IR spectroscopic measures with very fine energy resolution, which in term showed
the presence of a secondary peak whose temperature evolution was different from that of the main peak
(MgO has a single IR-active mode). Modelling the volume evolution with a quasi-harmonic model, but
taking into account the full anharmonic contribution to the spectra we could not only reproduce the
experimental data, but also show precisely the underlying physical mechanism involved in this peak. As
we have seen, IR radiation can couple to a doublet of phonons of opposite angular momentum; at the
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(a) PbTe anharmonic phonon dispersion (b) PbTe spectral weight

Figure 1.5: Study of the vibrational spectra of PbTe at 300 K. (a) Comparison of harmonic and anhar-
monic phonon dispersion with INS data. (b) Spectral weight. One can see how the peak measured at Γ
around 4 meV is not a single phonon, but a secondary peak caused by two-phonon processes. Experiments
are from Cochrane et al. 84 (black dots) and Delaire et al. 83 (pink squares). Figures from Reference 85.

energy of the secondary peak a very large volume of the Brillouin zone is involved in this mechanism,
giving rise to a maximum in the spectrum. In Figure 1.4 I report the experimental and theoretical spectra,
and a 3D plot of the Brillouin zone containing the volume contributing to the excitation of the secondary
peak. We used similar techniques in two papers [49, 82] which allowed to establish the accuracy of theory
up to 1400 K and down to 21 GPa. The extension to the entire range pressure and temperature range
of the Earth mantle, and application to study of planetary mantle dynamics is currently the subject of a
PhD study [50].

Another example of secondary peak that we could interpret with our ab initio tools is the softening of
the first optical mode in lead telluride. PbTe has a very low thermal conductivity which makes it a
good candidate material for thermoelectric development. Its cubic phase is stable at low temperature,
but it is an “incipient ferroelectric” material, i.e. a material characterized by increasing permittivity on
cooling due to the softening of the lowest frequency polar optical phonon. INS experiments [83] reported
that it exhibits a phonon satellite peak close to zone center, a clear fingerprint of strong anharmonicity.
We studied the evolution of the phonon bands using the SSCHA methods, and the formation of the
satellite peak via spectral weight simulations. In Figure 1.5 we show the comparison of calculation and
experiments. We could show that the formation of the satellite peak correspond to anharmonic softening
of the optical band, in conjunction with strong two-phonon scattering, which, as in MgO, can take place
toward a wide volume of the Brillouin zone.

On a slightly different direction, I supervised a combined effort of experiment and theory to study the
attenuation α = 1/2|cqj |τqj , i.e. the inverse of the two mean free paths, in semiconductors (Silicon
and GaAs) in an intermediate frequency between 100 MHz and 1 THz. This regime is particularly
interesting because the short wavelength of these waves is suitable to perform acoustic imaging, while
their low energy makes it non-destructive. The applications range from 3D imaging of photolithographic
semiconductor chips, to the control of quantum dots via optomechanic coupling. In this regime the
vibrations are half-way between the phonons (for which ωqjτqj � 1) and acoustic waves (ωqjτqj � 1)
which makes them particularly difficult to treat. We manage however, thanks to Fourier interpolation
techniques, to integrate the phonon lifetime with great accuracy, and obtain solid results down to the
10 GHz range, with very good agreement with experiments. I will give more details about this study in
Section 2.7.

More recently, we have used the spectral function analysis to interpret high energy peaks in the vibrational
spectra of minerals containing OH groups (lizardite, brucite, talc). This spectra can be difficult to
interpret because the high-energy modes of the OH bond (around 3700 cm−1) can blend with what in
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mineralogy is known as “overtones”, i.e. the collective excitation of two phonons as we have seen in
MgO and PbTe. A simpler approach tries to determine the position of secondary peaks, only considers
the conservation of energy and momentum, without including the anharmonic matrix element; but the
selection rules, embedded in the matrix elements, are difficult to infer from symmetry alone, especially
for structures that are only close to being symmetric, resulting in a large number of predicted peaks not
being observed in experiments. In the static limit, we can combine the spectral weight with the Raman
cross section, also from ab initio, and discern the relative intensity of the peaks [86].

1.5 Crystal structure simulation at finite temperature
The thermal excitation kBT , even for a temperature as high as 1000 K, is only roughly to 10−3 Rydberg
atomic units of energy. This is a tiny fraction of the typical energy involved in electronic excitation of
solids. In any good insulator, it cannot induce any excitation across the electronic band gap; in a bad
insulator, or even a metal, the change of the electronic population, due to the change in Fermi-Dirac
distribution, can have determine optical properties, but has only the tiniest effect on the electronic band
structure. It is in fact customary to use, in order to help numerical convergence of DFT calculations, a
fictive electronic temperature of the order of 10’000 K or more, without compromising the accuracy of
the simulation [87]. On one hand, the electronic structure is too rigid to be influences by temperature
directly, but on the other hand, thermal excitation induces vibration of the ions, which in term has an
effect on the crystal geometry and the electronic structure. In order to include the temperature ab initio,
a model to take into account the lattice vibrations is necessary.

An effect which cannot be taken into account by the pure harmonic theory is thermal expansion. In
this approximation, atoms vibrate in a symmetric parabolic potential: increasing the temperature has
only the effect of increasing the amplitude of their motion, not their average distance. A first approach
to treat thermal expansion is the Quasi-Harmonic Approximation (QHA) [88, 89]. In this theory, one
includes temperature dependence introducing the Helmoltz free energy F given by

F (T,u) = E(u) + kBT
∑
j

ln
(

2 sinh(~ωj(u)
2kBT

)
)

+ pV, (1.6)

where E(u) is the system “total” static energy, ωj(u) are the phonon frequencies where the index j is
composite of q-point and band index. They both depend on some structural parameters u. By finding
the value of u that minimizes F at a given temperature T , one can obtain the T -dependence of u. The
hydrostatic pV term is the product of the external pressure p with the unit-cell volume V . The QHA
approximation has been successful in predicting thermal expansion properties of simple bulk crystals
and even surfaces. As an example, we can see in Figure 1.6 how it can reproduce the negative thermal
expansion of Silicon at low temperature.

I have applied the QHA method in combination with the simulation of anharmonic spectra to interpret
the Raman spectra of synthesized monochalcogenides, GeTe, GeSe and SnSe, under high pressure or high
temperature conditions. These materials exhibit competing phases: starting from the high-symmetry
fcc Rocksalt Cubic phase, the lattice can develop a slight distortion in the internal coordinates, then
in its angles becoming rhombohedral. Lower symmetry orthorhombic Cnmn and Pnma phases are also
possible, and could be favoured at higher pressure. The relative formation entropy of these phases is very
close, more than we can trust DFT, but we can compute the vibrational modes and their Raman activity,
and compare their evolution on pressure and temperature with experimental data. Having access to the
anharmonic properties allows us to simulate also the peaks width and their temperature evolution. We
have keep in mind that the intrinsic peak width is only a lower bound for its experimental value, as
disorder scattering and experimental resolution can also contribute to its widening [90, 91]. I show in
Figure 1.7 a most significant result, in which the progressive merging of the two Raman-active peaks in
GeTe was shown to be an effect of their widening and deviation from the standard Lorentzian shape due
to anharmonic interaction.

In another work we could combine the capability of the anharmonic calculation to take into account
substitutional disorder, to determine the crystal structure of Ge2Sb2Te5 (GST). This material has an
hexagonal stacking, of which two variants had been hypothesized, depending on the position of Ge and
Sb atoms, but it not possible to discern between the two with direct crystallographic measures. A third
hypothesis, is that the two species can occupy either site, causing the structure to become disordered.
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Figure 1.6: An example of ab initio QHA applied to Silicon: (a) Helmoltz free energy as a function
of lattice parameter for several temperature values and, in black, the line joining the minimum of each
curve. (b) In black, the relaxed volume as a function of temperature; in blue, the volumetric thermal
expansion in parts per million.

Figure 1.7: Temperature dependence of experimental GeTe Raman spectra (dotted line, measured count
rate) and a comparison with calculation including anharmonicity (solid line, normalized to experimental
count rate). Adapted from Reference 90.
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By ab initio] anharmonic lattice simulations of GST with those of GeTe and Sb2Te3, we could argue that
its very low thermal conductivity is only consistent with the disordered lattice hypothesis [63].

QHA analysis becomes prohibitive when the crystal structure has more degrees of freedom, a multi-
dimensional space has to be explored with a plethora of DFPT calculation, and a global minimum found.
What is routinely done, even by us in many cases, is to only take into account the vibrational effect in
the volume optimization, while all the other degrees of freedom are relaxed statically. Furthermore, if
the DFPT phonons become unstable, it may not be possible to compute the Helmoltz energy in such a
simple way. We have seen in Section 1.3 as some TDP methods can provide an estimate of temperature-
dependent forces and stress. However, the computational cost is high, as long sampling phases are required
for each evaluation of teh forces. This is exacerbated by the “noisy” nature of these methods, which does
not cope well with standard minimization algorithms used to optimize the crystal structure.

Variable-cell molecular dynamics techniques, that allow to identify an average structure at finite temper-
ature has been available since the 1990s [92], however it is seldom used because of it is finicky in practice.
Extending this idea to fictitious dynamics (LD, metadynamics) may overcome these difficulties and pro-
mote it as a standard tool, bypassing the phonon calculation entirely. An alternative approach would
be to combine advanced structural search algorithms [93] with TDP to take into account the vibrational
contribution but increasing the efficiency of the search. These are promising lines of investigation in the
medium to long term, possibly in combination with machine learning technique to accelerate the ab initio
calculation, or the structural optimization by using methods, such as genetic algorithms, that do not rely
exclusively on the internal forces.

1.6 Perspectives on multi-carrier transport
An outstading challenge for the next decades is going to be the development of materials for energy
conversion and harvesting, in particular thermoelectrics and photoelectrics. My interest is mostly on the
former, where the use of ab initio methods can give a formidable contribution. Especially in combination
with modern “high throughput” simulation methods [94], we can at minimal cost detect good candidate
materials, based on a choice of optimization parameters. However, to this day, it is not possible to
discriminate by thermoelectric efficiency, i.e. the often used “figure of merit” ZT = S2ρ−1κ−1T . The
physical quantities on which it depends are Seebeck coefficient (S), electrical resistivity (ρ), and thermal
conductivity (κ), they can all be computed ab initio but by different groups, using specific approximations
and techniques, often under the hypothesis that the others factors are not important.

DFPT allows today to compute electron-phonon [95] and phonon-phonon scattering rates from first
principles; and to describe phonon transport via the BTE and electronic transport using the Wigner
Transport Equation [96]. There are some attempts to take into account the scattering time due to
electrons in lattice drive thermal transport [97], but with the interaction only in one direction. On
the other hand, for thermoelectric applications, the contributions of electrons and phonons is of similar
magnitude, they can interact strongly with each other and they can both be “hot”, i.e. out of equilibrium
effects and transient effect have to be take into account. Finally, in order to optimize the thermoelectric
properties, one has to act on the extrinsic effects: interfaces and nanostructuring, which cannot be
modeled accurately on the same scale of a DFT simulation. Some effect can be taken into account via
Non-Equilibrium Green Functions (NEGF, for example as in Reference 98), other would require multi-
scale modeling.

Solving this problem is not the task of a single person, for this reason I am participating in an effort of
joined expertise on hot carriers, NEGF, transport by electron and phonon and their interaction and on
solving coupled transport equations, with the perspective to produce a consistent theory, but also a set
of computational tools sufficiently reliable to be used in high-throughput simulations [99, 100].

1.7 Structure of the manuscript
The aim of this work is to present in a coherent way my work on the theory of ab initio anharmonic lattice
dynamics. In other words, the simulation of ionic vibration in crystal, from the harmonic level (phonons)
including anharmonic interaction and the phenomena that they describe: phonon lifetimes, attenuation,
featured vibrational spectra and thermal conductivity. This work represent the most important published
results complemented by comprehensive discussion, which can take the entire corpus into account.
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In Chapter 2.1, I will restate very briefly the theory of the harmonic crystal, to set the notation and
highlight a few important specificities which will be relevant later on. In Chapter 2 I will quickly discuss
on the perturbation theory to compute the intrinsic phonon lifetime, i.e. the lifetime that derives from
phonon-phonon scattering. I will also present results about graphene and graphite, attenuation of sound
waves in semiconductors and the complex spectra function of high anharmonic materials, with and
application to hydrogen-rich Palladium. In Chapter 3, I will review the theory of thermal transport
with a particular attention to extrinsic effects: finite size of samples and presence of defects. The theory
will be accompanied by some results on graphene and graphite, bulk Bi2Se3 with defects and Bi2Se3
nano-slabs.

In Chapter 4, I will detail the challenges met in the study of strongly anharmonic material, where the
developement of a perturbative model on top of “standard” harmonic phonons is not possible. I will also
report in more detail about a possible approach, the temperature dependent potential, which I have been
developing more recently, and show some unpublished result on the sampling of thermal vibration phase
space using different kind of deterministic (Newtonian) and stochastic (Langevin) molecular dynamics.
In Section 4.2 I will confront the open main challenges of the field and list some perspective of future
research.

The last four chapters are presented as appendices. They are written in a more informal but also detailed
way, which allows me to go much deeper into technical topics which are rarely discussed in the published
literature, with the aim of serving as reference for future students taking on these projects. They are
recommended for the more interested reader, but are not essential for understanding the rest of the work.
In Appendix A, I will detail the operations of Fourier transform and interpolation that relate real space
(force constant) and reciprocal space (phonon) representation of crystal vibrations. In Appendix B I’ll
discuss the enforcement and use of crystal symmetry in defining phonon modes and optimizing the search
for temperature-dependent phonon energies. In Appendix C, I will detail the implementation of “2n+1”
theorem in the Quantum ESPRESSO code, to obtain efficiently and fully ab initio the matrix elements
of the phonon-phonon coupling. Finally, in Appendix D, I give a brief description of the computer codes
which have been developed and used for all the results reported above.

As this work includes excerpts and results from previous publication, the writing style will vary. The
entirety of the text has been written by the author, during the course of collaboration with many people
from different research groups, which are cited at the beginning of the relevant sections.
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Chapter 2

Intrinsic lifetime of phonons

2.1 Harmonic Lattice Theory
At the Born-Oppenheimer approximation level, we assume that the ions (atomic nuclei and “rigid” deep
core electrons) move so much slower than the valence electrons that the latter can be considered to always
be at equilibrium during dynamics. The wavefunctions of the electronic and ionic part of the problem can
be solved independently. This is not the same as considering the ions to be classical charged particles, as
it does not preclude the quantum treatment of ions. More precisely the assumption is that one can define
a multi-dimensional “energy landscape” which depends parametrically on the position of the ions.

Let us consider the total energy of a crystal E(vi), where vi are some external parameter, i.e. in this
case the displacement of the atoms form their equilibrium position. The energy can be expanded in a
multidimensional Taylor series around the point v = 0:

E({vR,s,α}) = E0 +
∑
i

∂E
∂vi

∣∣∣∣
vi=0

vi + 1
2
∑
i,j

∂2E
∂vi∂vj

∣∣∣∣
vi=0,vj=0

vivj + ... (2.1)

Where E0 = E(0), the indeces i and j are composite that take into account the unit-cell. defined by its
vector R, a cartesian direction α = x, y or z and potentially the index s of the atom inside the lattice.
The first derivative is the opposite of the force fi = − ∂E

∂vi
acting on the atoms, it is vanishing when

the system is relaxed. If the system is a periodic crystal, the usual reciprocal-space techniques can be
used, transforming the approach from atomic displacements to phonons, i.e. periodic perturbations with
a precise wavevector.

We define the periodic displacements u in the following way:

uq,s,α = 1
N

∑
R
e−i2πq·RvR,s,α, (2.2)

where the sum is performed on the lattice vectors {R} and N is the number of cells considered in the
summation. We define the dynamical matrix as derivative with respect to these displacements:

D
( q
s s′

α α′

)
= 1
N

∂2Etot

∂u−q,s,α∂uq,s′,α′
, (2.3)

the pulsation ωq,j of a phonon with wavevector q and branch index j is obtained by solving∑
s′,α′

1
√
msms′

D2

( q
s s′

α α′

)
zq,j
s′,α′ = ω2

q,jz
q,j
s,α, (2.4)

where z are the orthogonal phonon eigenmodes, or polarization vectors, and ms is the mass of atom type
s. In real space one can define the “force constants” F that describe the two-body interaction between
atoms:

F

(
R R′

s s′

α α′

)
= ∂2E

∂rαi,R∂rβi′,R′

. (2.5)
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Using the definition of u, and considering that the position of atom i in cell R is just R + τi,R + vi,R,
where τ is the basis of the crystal cell, we can see that force constants and dynamical matrices are related
by a Fourier transform :

D
( q
s s′

α α′

)
=
∑
R
ei2πq·RF

(R 0
s s′

α α′

)
. (2.6)

Where by using translational invariance, we got rid of one of the sums. A large fraction of the compu-
tational work is to manipulate these quantities and to interpolate them. More details about transforms,
symmetrization and interpolation are available in Appendix A and B

We point out that the expansion of eq. 2.1 is not unique in several ways. As E(vi) is a smooth analytical
function, it can be approximated with a Taylor polynomial around any point v, because we are only
interested in mechanically stable materials, we may want to limit ourselves to the points where f = 0,
yet we could still find local minima or saddle points where to perform the expansion. Furthermore, we
observe that the Taylor method is not the only way to approximate a function with a polynomial, e.g.
instead of building a polynomial that shares its derivatives with our function, we could use one that crosse
the function in a given number of point, or, as we will see in Section 4.1 the polynomial that “better”
approximates our function in a given range, i.e. the range of thermal rattling of the atoms.

Different methods to contruct the polynomial will have different second-order terms, and as a consequence,
different phonon frequencies. In a perfect harmonic limit, there is no ambiguity, the problem emerges
when introducing anharmonicity: if we treat higher order as perturbations on top of the harmonic terms,
we will have a unique result only in the perturbative limit. On the other hand, the second order, i.e. the
harmonic phonons, and the magnitude of each order of the corrections will differ. Because perturbation
theory becomes very quickly prohibitively expensive, we prefer an approximation that gives the “best”
harmonic solution with the smallest possible anharmonic corrections. Again, different approaches are
possible we will review them in Chapter 4.

2.2 Ab initio phonon lifetime
As we have seen in Section. 1.1 that the intrinsic phonon scattering probability can be computed per-
turbatively from the third order of the Hamiltonian polynomial expansion, and that this third order can
be compute in DFPT via the “2n+1” theorem; the first implementations of the “2n+1” approach were
limited to the scattering of one zero-momentum phonon towards two phonons with opposite arbitrary
momenta (0, -q, q). Refs. 101 and 102 implemented this approach for insulating and semiconducting
materials. Later Ref. 103 extended the approach to metals and zero-gap materials. Following our imple-
mentation of Ref. 25, the generic (q1,q2,q3) anharmonic coefficients can be computed using Quantum
ESPRESSO [104, 105], using the d3q.x code.

Once the third derivative is available, a first application is to compute the phonon lifetime in a perturba-
tive way: the harmonic phonons are used as the unperturbed and the third order term of the Hamiltonian
is the perturbation. This expansion has been studied in detail in many papers, we followed the devel-
opment of Ref. 106. A point to note is that the first perturbative order include both three-phonon
and four-phonon scattering contribution to the phonon self-energy. However, the four-phonon terms is
real, i.e. only contributes a shift of the phonon frequencies. The three-phonon term is complex, and
contributes both a linewidth (its imaginary part) and a lineshift (its real part). As long as the phonon
frequency is large compared with its shift, it is not inaccurate to consider only the three-phonon terms
in the linewidth.

This chapter reports some of the most significant result from references 25, 48 and 107.

2.3 Anharmonic decay
Following the development of Reference 106 we define the three-phonon scattering coefficient as

V
(3)

qj,q′j′,q′′j′′ = 1
N

∂3Etot

∂Xq,j∂Xq′,j′∂Xq′′,j′′
, (2.7)
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where
∂

∂Xq,j
=
∑
s,α

√
~

2msωq,j
zq,j
s,α

∂

∂uq,s,α
. (2.8)

V (3) is an energy and does not depend on N , while Xq,j is adimensional. Because of the translational
symmetry of the crystal the coefficients V (3) from Eq. 2.7 are 6= 0 only when q + q′ + q′′ = G, where G
is a reciprocal lattice vector.

With these definitions, the lifetime due to anharmonic phonon–phonon interaction, τqj , and the corre-
sponding broadening γqj (full width at half maximum) of the phonon (qj) are [108]:

1
τqj(T ) =2γqj(T ) = (2.9)

π

~2Nq

∑
q′,j′,j′′

∣∣∣V (3)
qj,q′j′,q′′j′′

∣∣∣2 × [(1 + nq′j′ + nq′′j′′))δ(ωqj − ωq′j′ − ωq′′j′′)+

+ 2(nq′j′ − nq′′j′′)δ(ωqj + ωq′j′ − ωq′′j′′)
]
.

Where T is the temperature, nqj is the Bose-Einstein statistics occupation of the phonon (qj) and δ(x)
is the Dirac distribution. The sum is performed on a sufficiently fine grid of Nq q-points in the Brillouin
zone (BZ) and q′′ = −q − q′. τqj and γqj depend on T only through the phonon occupations n.

The r.h.s. of Eq. 2.9 is usually interpreted as the sum of scattering processes in which a phonon with
wavevector q decays into two phonons−q′, −q′′, (third line of Eq. 2.9) or in which the phonon q cohalesces
with −q′ and emits −q′′ (fourth line of Eq. 2.9). The energy conservation of the processes are guaranteed
by the Dirac delta. One can also distinguish between Normal and Umklapp processes: By choosing q and
−q′ such that they belong to the first BZ, the scattering is Normal when also q′′ = −q − q′ belongs to
the first BZ; on the contrary, when q′′ does not belong to the first BZ, the scattering is Umklapp.

By knowing the anharmonic scattering coefficients, Eq. 2.7, one can also determine the lattice thermal
conductivity within the framework of the Boltzmann transport equation (BTE) for phonons [109]. In
general, an exact solution of the BTE is a very difficult task and a commonly used approximation to the
problem is the, so called, single mode relaxation time approximation [23, 110–113]. Within the SMA, the
lattice thermal conductivity tensor is

κα,βL = ~2

NqΩKBT 2

∑
qj

cαqjc
β
qjω

2
qjnqj(nqj + 1)τqj . (2.10)

Here, Ω is the volume of the unit cell, KB is the Boltzmann constant and cαqj is the phonon group
velocity of the mode (qj) along the Cartesian direction α: cαqj = dωqj/(dqα). The SMA conductivity
from Eq. 2.10 can be obtained in a straightforward way once the anharmonic lifetimes τqj have been
computed from Eq. 2.9. κα,βL is a 3 × 3 tensor which takes into account the possible anisotropies and
transversal conductance. However, in high-symmetry crystals, as graphene and graphite, the off-diagonal
elements are zero. Moreover, in both graphene and graphite the two in-plane xx and yy components are
identical. The out-of-plane zz component is not well defined in the bidimensional graphene systems, but
it is meaningful in graphite.

The validity limits of the SMA are discussed in literature [23, 110–113]. Here, we just remind that, for a
generic material, the SMA is expected to be valid (that is, to provide the correct solution to the BTE) at
room conditions and to break down only at very small temperatures (see, e.g. 114, 115). As a matter of
fact, however, a direct verification of the SMA (that is, a direct comparison with the conductivity obtained
by solving exactly the BTE) has been attempted only in a few cases [114, 115] and an absolutely general
statement cannot be done.

2.4 Application: Graphene and Graphite phonon lifetimes
Calculations of the phonon properties are done within density functional perturbation theory [116] as
implemented in 105. The third order coefficients defined in Eq. 2.7 are computed using a code which has
been developed for the present work. This code has been written on the top of a previous less general
implementation available within the Quantum-espresso package: The D3 code, which was implemented
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Figure 2.1: Graphite phonon dispersion. Symbols are measurements from 117, 118. Lines are calcula-
tions. In the right panel, the TO optical branches are plotted two times. The solid (black) lines include
GW corrections of the electron-phonon interaction. On the contrary the dashed (green) lines are done
using standard DFT and they are shown only for comparison. Left panel: Solid lines are done by using
c/a = 2.664; dashed lines are done with c/a = 2.727 and they are shown only for comparison. In both
panels, the solid lines correspond to the calculations used throughout the paper.

in 103. The present code allows the calculations of V (3)
q,q′,q′′ for any reciprocal space vector triplet such

that q + q′+ q′′ = G, while the previous implementation was restricted to the case V (3)
0,−q,q. The method

is described in Appendix C.1.

We use local-density approximation and the carbon atom is described by a hard norm-conserving pseu-
dopotential which includes four electrons in valence. Plane waves kinetic energy cutoff is 90 Ry. For all
the systems, the in-plane lattice parameter is a = 2.44 Å, which is the theoretical equilibrium value for
graphite. For graphite, we use c/a = 2.664. This value, which is only slightly different from the experi-
mental value c/a = 2.727, is chosen phenomenologically so as to accurately reproduce the low frequency
phonon dispersion along the Γ−A direction. For graphene, the periodic replicas of the planes are spaced
along the z direction with 7 Å of vacuum. The two layers of the graphene bilayer are spaced with the
inter-planar distance of bulk graphite; periodic images are then spaced with 7 Å of vacuum.

The computational details are described in Appendix 2.4.1. Here we just remind that the electronic
integration needs to be done using a small smearing value (and a consequent fine-grained k-point grid)
because of the presence of a Kohn anomaly for the highest optical branch near K [119] (usually called TO).
The phonon frequencies ωqj and the third-order coefficients V (3), which are used in Eqs. 2.9 and 2.10,
are calculated in a slightly different way. On one hand, phonon energies are corrected using an ad-hoc
procedure (based on DFT+GW renormalization of the electron-phonon interaction as in Ref. 120, see
also Appendix 2.4.1). This correction affects only the TO branch, it does not touch the other branches,
and it provides better agreement with measurements, Fig. 2.1. On the other hand, the third-order
coefficients are computed within standard (less precise) DFT. The use of these two different procedures
for the ωqj and V (3) calculations is not consistent. However, this should not affect the results in a major
way. Indeed, the phonon broadening results from a sum on different processes which are selected by
energy conservation implemented by the two Dirac δ in Eq. 2.9. The intensity of the processes is then
proportional to the square of the V (3) coefficients. Because of this, the accuracy of the computed ωqj and
that of the V (3) coefficients affect the result in a very different way. An error in the phonon dispersion
can affect the lifetime in a not predictable way and, thus, a special care should be taken into finding the
best possible description of the phonon dispersion. The same care is not strictly necessary for the third
order calculations.

Fig. 2.1 compares measured with calculated phonon dispersions for graphite. Notice that plain DFT
calculations do not provide a satisfactory description of the highest optical TO branch near bf K, while
DFT+GW ones do much better. The higher panel of Fig. 2.1 shows in detail the low frequency dispersion.
This region is characterized by the splitting of the acoustic phonon branches of the two graphene planes in
the graphite unit cell. These branches are particularly sensitive on the actual value of c/a. In particular,
in that region, by changing the lattice parameters from c/a = 2.664 (which is the value used throughout
the paper) to c/a = 2.727 the phonon branches change by almost 14%.

Actual DFT calculations are done on a relatively coarse grid of q wavevectors, described in Section 2.4.1.
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The dynamical matrices and the third order coefficients, that are necessary to compute the broadening
and the thermal conductivity (Eqs. 2.9 and 2.10) are then obtained for a finer grid with the Fourier
interpolation technique described in Appendix A.5. Eqs. 2.9 and 2.10 are evaluated by performing the
sum over a discrete grid of q points and by substituting the δ(x) with a Gaussian function characterized
by an artificial smearing χ. This approximation is valid as long as χ is smaller than the thermodynamic
fluctuation, which is of order KBT . The grids and the χ values are specified in Section 2.4.1. Here
we just remark that the results shown in Sects. 2.4.2 and 2.4.3 are obtained using a particularly fine-
grained sampling. This is only necessary to produce the very sharp features which are present in the
broadening of the higher optical bands or to produce the correct behavior of the broadening of the acoustic
branches in the vicinity of Γ. Indeed, a much coarser grid is sufficient for most applications, as those of
Sec. 3.2.1.

2.4.1 Computational details
Electronic integration
The electronic integration of the density functional theory calculations is done using a first-order
Methfessel-Paxton smearing[121] of 0.02 Ry which converges for a grid of 32× 32× 1 electronic k-points
in simple and bilayer graphene and for a grid of 32× 32× 8 k-points for graphite.

Linear response calculations
DFT dynamical matrices are corrected using a procedure based on DFT+GW renormalization of the
electron-phonon interaction as in 120. Indeed, DFT reproduces very well the measured dispersions of
graphite for all the phonon branches but for the TO one, in the vicinity of the high symmetry point K. This
failure of DFT, which is very specific to the graphene and graphite systems, has been analyzed in Ref. 120.
To improve the accuracy of the TO phonon branch, we have applied an electron-phonon self-interaction as
described in Ref. 120. The detailed procedure is described in Sec. IIB of 122 (third paragraph). We have
used the parameter rGW = 1.65, which is appropriate to the present LDA calculations and which can
be derived from Table I of 120. Using this approach we determined the dynamical matrices of graphene
on a super-sampled 48× 48× 1 q-point grid. The matrices for the graphite and for the bilayer are then
obtained by using as in-plane force constants those of graphene and as out-of-plane force constants those
coming from independent DFPT calculations on the two systems.

The third order coefficients are obtained in the standard way, that is without including this self-interaction
correction of reference [120]. For graphene, the third-order coefficients are calculated on a 8× 8× 1 q-
point grid, meaning that we have calculated every triplet (q,q′,q′′) of points, such that q and q′ bolong
to the grid and that the condition q + q′+ q′′ = 0 is satisfied. In practice, if one choses q and q′ so that
they belong to the grid, q′′ = −q−q′ may not belong to the grid. q′′ is however still connected to a point
in grid by a reciprocal lattice vector translation. The double-sum over the 8 × 8 × 1 grid includes 4096
points, but after taking symmetry in account, it can be reduced to a total of 88 non-self-consistent third-
order response calculations. For bulk graphite, third-order coefficients are calculated on a 8× 8× 2 grid,
which consists in 297 irreducible q triplets. When computing the linewidth, we have tested convergence
starting from the 8×8×2 grid coefficients, finding that the use of the those from the 4×4×2 subset grid
(33 inequivalent triplets) does not worsen accuracy. For bilayer graphene, the third-order coefficients are
calculated on a 4× 4× 1 q-point grid (12 irreducible triplets).

Linewidth calculations
Eqs. 2.9 and 2.10 are evaluated by performing the sum over a discrete uniform grid of q points
randomly shifted from the origin. The δ(x) distribution is substituted with the gaussing function
δ̃(x) = e−(x/χ)2

/(χ
√
π), where χ is an artificial smaring, independent from q. The results of Sects. 2.4.2

and 2.4.3 are obtained by using: For graphene, a 1800× 1800× 1 grid and χ = 1 cm−1; for graphite, a
600× 600× 15 grid and χ = 5 cm−1; for the bilayer, a 1200× 1200× 1 grid anχ = 2 cm−1. The results of
Sec. 3.2.1 are obtained by using: For graphene, a 128× 128× 1 grid and χ = 10 cm−1; for graphite and
bilayer, a 64 × 64 × 4 grid and χ = 10 cm−1. For each system, the same grid is used to determine the
linewidth from Eq. 2.9 and the thermal conductivity from Eq. 2.10. The convergence, has been tested
using smaller values of smearing and finer grids at selected values of temperature.
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Figure 2.2: Calculated graphene phonon dispersion. Each phonon branch is represented with a variable-
width filled band: the graphical width is equal to the respective anharmonic broadening at 300 K,
expressed in cm−1 and magnified by a factor 100. The vibrational density of states (VDOS) is also
shown, together with its decomposition over groups of disentangled branches labeled as Z (corresponding
to the ZA and ZO braches), TA and PH (corresponding to LA, TO, and LO).

2.4.2 Graphene phonon broadening
Fig. 2.2 shows the calculated graphene phonon dispersion, the respective anharmonic broadening and
the vibrational density of states (VDOS). The branches are labeled in the usual way [123]. There are
three acoustic branches (ZA, TA, LA) and three optical ones (ZO, TO, LO). ZA and ZO correspond to
an atomic motion perpendicular to the graphene plane (z direction), all the other branches are polarized
parallel to the plane. In the vicinity of Γ, TA and TO are quasi transverse, while LA and LO are
quasi longitudinal. In the following, these labels will be used to classify the branches all along the high
symmetry lines (as in Fig. 2.2), although this distinction is not meaningful for an arbitrary wavevector
in the Brillouin zone (BZ). Because of symmetry, the modes perpendicular polarized (ZA and ZO) are
separated from the others all over the BZ. Moreover, the TA branch is always well separated from the
other parallel polarized branches (labeled as PH). In Fig. 2.2, we can, thus, separate the VDOS in three
distinct components labeled as Z, TA, and PH. The two dimensional character of the phonon dispersion
is associated with some specific features. The ZA branch is quadratic near Γ and, thus, in the limit ω → 0
the VDOS does not go to zero (Fig. 2.2). The presence of a local maximum in the phonon dispersion
(as the one at 1008 cm−1 for the TA branch near K or the one at 904 cm−1 for the ZO one near Γ) is
associated with a step in the VDOS. The presence of a saddle shaped dispersion (as those at 477, 631,
643, and 1432 cm−1 at M) is associated with a sharp peak in the VDOS.

Fig. 2.3 reports in more detail the calculated anharmonic phonon broadening, along high symmetry
lines, and its decomposition into the different possible decay channels. For symmetry reasons, the z-
polarized branches, can only decay toward one Z and one non-Z phonons. The other bands can only
decay towards two phonons which are either both or neither z-polarized. The two most striking features
in Figs. 2.2, 2.3 are the small q behavior of the acoustic branches and the highly non uniform behavior
of the broadening.

First, we remind that in a three dimensional isotropic crystal, all the three acoustic branches are linearly
dispersive and one expects to observe for q → 0 a vanishing broadening. On the contrary, at finite
temperature, both TA and LA branches of the two dimensional graphene have a non-zero broadening in
the q → 0 limit. This behavior is due to the decay into two phonon both in the ZA branch, Fig. 2.3. This
decay is Normal (see the definition in Sec. 2.3). Actually, one can easily demonstrate that, in general,
when a linearly dispersive phonon decays into two quadratically dispersive phonons, the broadening is
non vanishing in the q → 0 limit because of energy and momentum conservation (see Ref. 24 for a
more detailed discussion). Moreover, the quadratically dispersive ZA branch has a broadening which
is itself quadratic in q around Γ. The ZA broadening is due to a Normal decay into one ZA phonon
and on linearly dispersive, TA or LA, phonon. Again, one can demonstrate that, in general, when a
quadratically dispersive phonon decays into one quadratically and one linearly dispersive phonon, the
broadening vanishes quadratically in the q → 0 limit. We remark that, here, the anharmonic broadening
has been computed by summing over an extremely fine reciprocal-space grid (see Appendix 2.4.1). This
is necessary in order to reproduce correctly the anomalous behavior of the LA and TA broadening for
small q. Far from Γ, the details of the broadening can be correctly reproduced by using a much coarser
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Figure 2.3: Graphene anharmonic phonon broadening (FWHM) at 300 K, for each phonon branch
(labeled as in Fig. 2.2), along high symmetry lines. The total broadening (solid thick line) is decomposed
depending on the character of the final states which are labeled as Z, TA, and PH (see the text): e.g.
TA-PH corresponds to a decay involving one TA and one PH phonon.

21



Figure 2.4: Graphene anharmonic phonon broadening (FWHM) in cm−1 at 300 K, for the three acoustic
branches, over the Brillouin zone.

grid.

The existence of a finite broadening at small q for the TA and LA acoustic branches is problematic.
Indeed, the concept itself of phonon is meaningful only when ω/γ > 1, being γ the broadening (i.e. the
inverse of the phonon lifetime). From the present calculations, the condition ω/γ > 1 is satisfied for both
the TA and LA branches for q > q, with q = 0.5×10−42π/a0, being a0 the in-plane lattice spacing. Thus,
for q < q, the TA or LA frequency can become smaller that the broadening. In this region the present
treatment is, obviously, not valid (see the discussion in 24) and a proper treatment of the phenomenon is
beyond the present scope. In practice, however, q < q represents a tiny portion of the Brillouin zone (the
corresponding region in Figs. 2.2, 2.3 has width of the order of the thickness of the vertical line passing
through Γ). As a consequence, we can assume that those properties which are obtained as a sum all over
the Brillouin zone (such as the thermal conductivity of Eq. 2.10) are not affected by a major error.

Concerning the global appearance of Figs. 2.2, 2.3, the many sharp peaks in the broadening can be
ascribed to different mechanisms. Those in the highest part of the spectrum are, generally, associated
with peaks in the VDOS: When one or both of the final states (i.e. of the states that meet energy and
momentum conservation requirements in Eq. 2.9) produce a peak in the VDOS, there the broadening
typically exhibits a peak. For example, the large scattering probability, predicted for the M point on the
LO branch (1373 cm−1), correspond to a decay toward a ZO phonon close to Γ (904 cm−1) and a ZA
phonon close to M (477 cm−1). As the VDOS, Fig. 2.2, has maximum in both region, this transition
is particularly favored. On the other hand, for q & 0.66M (along the ΓM direction) or for q & 0.62K
(along ΓK), the LO broadening displays a sudden increase. This is because, for these wavevectors, the
LO energy has become small enough to activate the decay channel towards the ZO branch (At q ∼ 0.66M
and q ∼ 0.62K the LO phonon decays into a ZO with the same wavevector and a ZO with q ∼ Γ).

We remark that the presence of sharp peaks which are essentially determined by energy and momentum
conservation in the decay process implies that even a small change in the phonon dispersion which is
used in the calculation could provide significant differences on the calculated broadening. This should be
considered while comparing with the present calculations.

Concerning the three acoustic branches, the broadening near Γ is almost entirely due to Normal scattering.
The peaks which are observed at q&0.44 M and q&0.41 K for the LA branch, and at q&0.65 M and
q&0.54 K for the TA one, are associated with the activation of Umklapp scattering towards the ZA
phonons. To have a more comprehensive view, Fig. 2.4 reports the broadening in the entire Brillouin
zone. The TA and LA branches exhibit a feature-rich behavior in a wide region, far from Γ, which roughly
starts at about halfway to the first BZ edge. In this region, the anharmonic decay presents a component
of Umklapp processes, which is absent in the vicinity of Γ, where the scattering is almost entirely Normal.
On the other hand, the ZA broadening is relatively feature-less and isotropic; it is quadratic in q in the
center of the first BZ then it saturates and become relatively constants.

2.4.2.1 Phonon mean free path
An alternative way to represent the effect of the phonon broadening is to plot the single-phonon mean
free path (MFP):

λqj = τqj |cqj | , (2.11)
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Figure 2.6: θS and α parameters (defined in the text) for the graphene acoustic (left) and optical (right)
branches. For a given phonon mode, the temperature dependence of the anharmonic broadening can
be approximated by γ(T ) ' αθScoth(θS/T ), where θS and α are the parameters corresponding to that
phonon. θS is a characteristic temperature and α is the high temperature slope of γ(T ). γ0 is the T = 0 K
broadening.

where cqj is the phonon group velocity and τqj is the phonon lifetime, from Equation 2.9. In figure 2.5 we
have plotted the MFP at 300 K for the three acoustic branches. The MFP for the TO and LO bands is of
order 100 nm or smaller. We have verified that it does not get substantially higher at lower temperatures,
except in the vicinity of Γ where it diverges at 0 K. On the other hand, at room temperature, the MFP of
the ZA bands is one order of magnitude larger, i.e. of order 1 µm, in the center region of the Brillouin zone.
Also, it increases linearly when temperature decreases. Obviously, expecialy at small temperatures, when
the intrinsic anharmonic MFP is too big other effects (typically the scattering with the borders of the
sample) become determinant and determine the value of the MFP. We remark that the MFP of acoustical
phonons is only one order of magnitude smaller than typical dimensions of high-quality graphene samples.
It is, also, definitely larger than the transverse dimension of graphene nano-ribbons. This result suggests
that ballistic phonon-driven conductance could be relevant in this kind of systems.

2.4.2.2 Temperature dependence
The intrinsic anharmonic broadening of a specific phonon (qj) has, in general, a typical dependence of
the temperature T : It is almost constant below a certain characteristic temperature θs, then it rapidly
becomes linear in T . Such a behavior is reproduced by Eq. 2.9. A quadratic dependence on T can be
observed only at relatively high T and it is due to terms of order higher than those included in Eq. 2.9
[124].
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From Eq. 2.9, one can check that

lim
T→∞

γqj(T ) = αqjT +O(1/T ), (2.12)

where

αqj = πKB

~3Nq

∑
q′,j′,j′′

∣∣∣V (3)
qj,q′j′,q′′j′′

∣∣∣2×[(
1

ωq′j′
+ 1
ωq′′j′′

)
δ(ωqj − ωq′j′ − ωq′′j′′)+

2
(

1
ωq′j′

− 1
ωq′′j′′

)
δ(ωqj + ωq′j′ − ωq′′j′′)

]
(2.13)

does not depend on T . One can thus be tempted to approximate the overall dependence on T of the
broadening γ by

γqj(T ) ' γ̃qj(T ) = αqjθ
S
qj coth

(
θS

qj
T

)
, (2.14)

where coth is the hyperbolic cotangent, θS
qj = γqj(0)/αqj , and γqj(0) is the T = 0 broadening from

Eq. 2.9. Indeed, γ̃ from Eq. 2.14 is almost constant for T � θS and tends to γ(0) for T → 0. Moreover,
γ̃(T ) = αT+O(1/T ) for T � θS. To check the validity of this approximation (Eq. 2.14), we systematically
computed the graphene broadening for different phonons in the temperature range between 0 and 1500 K,
using Eq. 2.9. These results are reasonably well reproduced by Eq. 2.14 with an error less than 5%.

As a consequence, for a given phonon mode (qj), the knowledge of the two corresponding parameters θS

and α is enough to determine the overall temperature behavior of the broadening, by using Eq. 2.14. The
two parameters can be extracted from Fig. 2.6, for the graphene acoustic branches, along high symmetry
lines.

Finally, the broadening of the LA and TA branches can be fitted with an isotropic function of q = |q|
and of T of the form:

γ(q, T ) = qB coth
(
qA

T

)
. (2.15)

By defining b0 = 2π
a0
, where a0 is the cell parameter, we have: for the LA band, BLA = 4.58 cm−1/b0

and ALA = 694 K/b0; for the TA band, BTA = 0.805 cm−1/b0 and ATA = 241 K/b0. These fitted
parameters reproduce the computed linewidth with an error of generally less than 10% for q < 0.40 b0,
the highest accuracy for higher temperature and lower |q|. For the ZA band θs, resulting in this simple
fitting function:

γ(q, T ) = Bq2T . (2.16)
Taking BZA = 25.9 × 10−3 cm−1/b20 we reproduce the value of linewidth to 10% accuracy in the range
q < 0.25 b0, except for systematically underestimating it in the very small q region where it is negligible
(γ < 10−5 cm−1).

2.4.3 Graphite and bilayer graphene
We now discuss the anharmonic broadening in graphite and graphene bilayer. Each of the six phonon
branches of the graphene monolayer splits into two branches for both graphite and graphene bilayer.
The three acoustic branches of graphene (ZA, TA, LA) split into three acoustic (ZA, TA, LA) and three
quasi-acoustic branches (ZO′, TO′, LO′). The quasi-acousitc branches are almost degenrate with the
respective acoustic one, except in the vicinity of the Γ-A line. The remaining six optical branches are
pair-wise quasi-degenerate in the entire Brillouin zone, and they will be referred in pairs simply as ZO,
TO and LO or, in some cases as ZO1, ZO2, etc. This notation does not hold along the Γ − A line in
graphite, as the bands degeneracy changes. It is however still possible to name the branches by continuity
below 600 cm−1.

Fig. 2.7 shows a general view of the calculated phonon dispersion and broadening in bulk graphite and
graphene bilayer. Fig. 2.8a and Fig. 2.8b, compare the broadening of the acoustic and quasi-acoustic
branches of, respectively, graphite and bilayer graphene with those of the single layer graphene. Fig. 2.9,
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shows in more detail the low frequency region. In the high energy part of the spectrum, graphite and
graphene monolayer and bilayer are almost undistinguishable, Fig. 2.7, meaning that the physics is ruled
by the two dimensional character of the phonon dispersion also in graphite. Some of the graphene sharp
features are a slightly broader in graphite due to the out-of-plane phonon dispersion acting like an effective
smearing. The most striking differences between three-dimensional bulk graphite and two-dimensional
graphene monolayer and bilayer are associated with the acoustic and quasi-acoustic branches.

First, we remind that, in graphene, the vibrational density of states (VDOS in Fig. 2.2) has a finite
constant value for energies approaching zero. This is because the ZA branch has a quadratic dispersion
(not linear as usual) and the VDOS is calculated in a two dimensional Brillouin zone. On the contrary,
in graphite, the VDOS goes to zero almost linearly for energies going to zero, Fig. 2.7. This happens
in spite of the fact that in graphite, when the out-of-plane component qz = 0, the ZA branch is not
very different from the graphene one. In particular, on the scale of Fig. 2.7, the graphite ZA branch
(for qz = 0) appears quadratic as the graphene one from Fig. 2.2. Indeed, for graphite, the VDOS is
calculated in a three dimensional BZ and the qz = 0 phonons have an infinitesimal weight. Also, notice
in the graphite VDOS, the presence of a peak at 132 cm−1 corresponding to the ZO′ frequency at Γ.
This peak and this phonon do not have a correspondence in graphene. Finally, from Fig. 2.7, the bilayer
VDOS has a finite constant value for zero energy (as for the monolayer) and it also shows the ZO′ peak
at 94 cm−1 (as in graphite).

Let us consider the broadening of the LA and TA branches in Fig. 2.8a. As already said, in graphene,
these broadening do not vanish for q → 0 and, for small q, they are relatively constant over a wide range of
q values (e.g. for the LA mode we are considering the region with q < 0.4M and q < 0.4K in Fig. 2.8a).
This, “plateau” is due to Normal scattering towards the ZA phonons and its characteristics stem for the
fact that the ZA dispersions is quadratic and that the integration (the sum in Eq. 2.9) is done on a two
dimensional Brillouin zone. On the contrary, for three dimensional graphite, the broadening of both LA
and TA modes vanishes for q → 0. It is remarkable, however, that the graphite broadening still presents
a Normal scattering plateau, similar to the one of graphene, for sufficiently large q. This is particularly
evident for the LA mode for q > 0.2M and q > 0.2K in Fig. 2.8a. The LA and TA broadening in bilayer
graphene, Fig. 2.8b, are rather more similar to the graphite one than to the graphene ones, indicating
that, for a higher number of layers, the broadening should rapidly converge to the bulk graphite one. Note
that, graphene bilayer presents non-vanishing broadening of the TA and LA bands at Γ, its magnitude
being about half for bilayer than for graphene.

Finally, let us consider the z polarized branches. The ZA broadening in graphite is similar to the graphene
one. On the other hand, the ZO′ broadening of graphite is much larger than the ZA one, in spite of the
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fact that the ZO′ and ZA branches are strictly related. Particularly striking is the sudden increase in the
ZO′ broadening for certain values of q in the vicinity of Γ (e.g for q = 0.47M along the ΓM direction).
This peak of the broadening is due to the decay of a ZO′ phonon, having a finite wavevector q into a ZA
phonon near q and a LO′ (or TO′) phonon near Γ. This kind of decay is possible only when the energy
difference between the ZO′ and the ZA is equal or smaller than the energy of the LO′ and TO′ at Γ (the
LO′ and TO′ are degenerate at Γ), see Fig. 2.9. This condition is verified only for q sufficiently far from
Γ. Thus, by increasing q, the sudden availability of this new decay channel produces the peak in the
broadening. Finally, for the bilayer, the ZO′ broadening presents a structure which is not fundamentally
different from the one in graphite.

2.5 Conclusion of graphene and graphite
Interesting, the broadening of the high-energy optical branches is highly non-uniform and presents a
series of sudden steps and spikes of various origin. At finite temperature, the two linearly dispersive
acoustic branches TA and LA have non-zero broadening for q → 0 (this was already noticed in 24).
This anomalous behavior is due to Normal scattering towards two ZA phonons (which are quadratically
dispersive), for small q. The activation of the Umklapp scattering for sufficiently large q is associated
with a sudden increase of the broadening at nearly half the Wigner Size cell. Also, we provide a set
of expressions which ca be used to fit the anharmonic scattering time and broadening for the acoustic
phonon branches, which are the most relevant in thermal transport.

The broadening of graphite and bi-layer is, overall, very similar to the graphene one. The most remarkable
feature is the broadening of the quasi acoustical ZO′ branch, which is much larger and very different from
the one of the strictly related ZA acoustic branch. On the other hand, the broadening of the TA and LA
branches of graphite, displays a certain number of similarities with that of graphene mono and bi-layer,
in spite of the different dimensionality of the systems.

We will compute in Section 3.2.1 the thermal conductivity of graphite and graphene and compare it with
experimental data.

2.6 Phonon spectral function
So far we have assumed that Γ only depends on q and on the phonon band, and that it is independent of
the energy. This may however be false when the phonon linewidth becomes comparable with the energy
separation of non-degenerate modes. However, this is not a deal breaker for our technique, ΠHBµ (q, ω) self-
energy we can simulate the phonon spectra function at an arbitrary q-point, and without any assumption,
according to the following espression [79]:

σ(q, ω) =
∑
µ

−2~Ωµ(q)ImΠHBµ (q, ω)
[~2ω2 − ~2Ω2

µ(q)− 2~Ωµ(q)ReΠHBµ (q, ω)]2 + 4~2ω2
µ(q)[ImΠHBµ (q, ω)]2 . (2.17)

Substituting in Eq. (2.17) ImΠHBµ (q, ω) ∼ −Γph−ph
µ (q) and ReΠHBµ (q, ω) ∼ ∆µ(q) the spectral func-

tion σ(q, ω) reduces to a combination of Lorentzian functions. This substitution is justified as long as
the real part of the self-energy remains constant in the energy range defined by the phonon linewidth.
Indeed, in most cases the measured INS spectra show Lorentzian line-shapes [79], as the experimental
phonon frequency is determined by the position of the peak and the linewidth of the Lorentzian gives the
experimental phonon linewidth.

We have applied this technique to Palladium Hydride in Ref. 48, here we reproduce some of the main
results. In Fig. 2.10 and 2.11 we plot the spectral function σ(q, ω) for PdH, PdD and PdT at 80 and
295 K, keeping the full dependence on ω of the self-energy. As it can be observed, while the acoustic
phonon peaks in σ(q, ω) fulfill with the simple Lorentzian picture, the highest energy modes already at
80 K show shoulders in their peaks not expected a priori. The situation becomes more dramatic at high
temperature, as σ(q, ω) shows very wide resonances with a non-Lorentzian peak at most q points for
the optical modes, sometimes even with satellite peaks. The reason for this is that the self-energy is
not constant in the range defined by the big linewidth of the optical modes. Having satellite peaks can
be very misleading for experimentalists, since they can be interpreted as structural phase transitions.
However, as in the case of Palladium hydrides, secondary peaks emerge due to strong anharmonicity. A
similar effect has been recently reported in PbTe [125, 126].
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Figure 2.10: Spectra weight ~ωσ(q, ω) of Palladium hydrides at 80 and 295 K at the X point. The
red dashed lines represent the curve obtained keeping the full dependence on ω of the self-energy in
Eq. (2.17), while the red dashed line is the Lorentzian line-shape obtained substituting in Eq. (2.17)
ImΠHBµ (q, ω) ∼ −Γph−ph

µ (q) and ReΠHBµ (q, ω) ∼ ∆µ(q). The vertical black dashed lines denote the
position of the SSCHA phonon frequencies.
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Figure 2.11: The same spectra as Figure 2.10 but for point q = 2π/a[1/2, 0, 0], where the strongest
anharmonicity was observed.
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More in detail, in Figures 2.10 and 2.11 we plot ~ωσ(q, ω) for the X point and q = 2π/a[0.5, 0, 0],
respectively. We decided to plot σ(q, ω) multiplied by ~ω because the integral of this quantity over the
entire energy domain gives the number of modes[127]. The curve obtained substituting in Eq. (2.17)
ImΠHBµ (q, ω) ∼ −Γph−ph

µ (q) and ReΠHBµ (q, ω) ∼ ∆µ(q) is also shown. It is clear from the figures that
the latter approximation yields good spectral peaks for the Pd-character acoustic modes, but not for
the H-character optical modes, specially at high temperature. For instance, at the X point at 295 K
for PdH we observe that the peak associated to the lowest-energy optical mode is split into two distinct
peaks and the highest-energy optical mode shows a satellite peak at high energy. The departure from
the Lorentzian line-shape is less acute for the heavier isotopes. At q = [0.5, 0, 0]2π/a on the contrary,
the highest-energy optical peak appears with a complex line-shape with a double-peak structure for all
the isotopes both at low and high temperature. We made the hypothesis that this complex line-shape is
caused by the presence of two competing decay mechanisms; for example in the PdD case at the point
bfq = [1/2 0 0]2π/a we have a strong peak around 490 cm−1 which is interestingly situated higher
than the energy of the unperturbed SSCHA phonon eigenvalue (479.1 cm−1). Another peak is situated
prese4nt at a slightly lower energy, around 450 cm−1 We decomposed the contribution to Γ(q, ω) at this
point and the energy of the two peaks, over the BZ. We found that the higher peak is caused by the
activation of a decay channel toward two phonons on the lower optical band: one at X, the other at the
Gamma point. This decay mechanism is forbidden at the energy of the lower peak, where the favourite
decay mechanism is toward one optical and one acoustical phonon.

2.7 Attenuation of Hyper-acoustic waves in GaAs
In this section we present some result from Ref. 107: the application of ab initio methods to the calculation
of hyperacoustic wave attenuation in large GaAs crystals. The comparison of calculation with experiments
has allowed us to settle in a convincing way a debate about the origin of a “plateau” observed in the
acoustic bands as a function of the phonon frequency. We showed that it is caused by the switch from a
Herring to a Landau-Rumer regime. In simplified terms, from the sound wave scattering with a higher
energy phonon to decays toward two lower energy phonons. On the contrary, the hypothesis of it being
caused by the Akhiezer regime, i.e. collective scattering of the acoustic waves due to lattice elasticity, is
disproved [128–131].

The attenuation of ultra-sound waves is related to the acoustic field amplitude by the following rela-
tion:

Az(T ) = A0e
−α(T )z, (2.18)

where Az is the measured amplitude, A0 is the amplitude of the generated pulse, z is the distance from
the pulse source and α is the attenuation. The attenuation is inversely proportional to the phonon lifetime
and its group velocity i.e., to the derivative of the phonon frequency with respect to the wavevector,1
vq,j = ∇qωq,j . The attenuation reads:

αq,j = 1
2|vq,j | τq,j

. (2.19)

We focus on the case for which we are able to directly compare experimental results and calculations:
the longitudinal phonon branch along the [100] direction. As shown in figure 2.12a, the agreement is
remarkable. Not only does the calculation correctly reproduce the qualitative behavior of α(ω), and the
presence of the plateau between 600 GHz and 1 THz, but also the experimental and calculated absolute
values of the attenuation are very close. We stress that no renormalization has been applied to the data:
the values of the attenuation directly come from the ab initio calculations.

In figure 2.12b, we examine the behavior of α at the fixed frequency value of 713 GHz, as a function of the
temperature, and compare it with the experimental data. The low-temperature region is magnified in the
inset of figure 2. The agreement between the ab initio calculations and the experimental data (starting
from 20 K) is strikingly good even at very low temperature. We report as supplementary materials the
comparison for eight different frequencies, with similar conclusions.

1This derivative has to be done with some care, to avoid problems when phonon branches cross or are
degenerate. Details can be found in section IV of Ref. 132.
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Figure 2.13: GaAs. Attenuation of longitudinal and transverse phonons along the [100] and [111] direc-
tions at 50 K (left panel) and 300 K (right panel). Note the change of scale between the two temperatures
(panels), as well as the different axis for the TA mode (on the right) in the left panel.

At this point it is important to note that the experimental data correspond only to the relative change
of attenuation with temperature defined by:

α(T )− α(10 K) = −1
z

ln( Az(T )
Az(10 K) ), (2.20)

where Az is defined in Equation 2.18, while the ab initio data is the absolute value of the attenuation
given by Equation 2.19.

Thus, the experimental points would eventually go exactly to zero, at zero temperature, while the the-
oretical data, which take into account spontaneous decay processes, have therefore a finite limit at 0 K.
The extremely good agreement above approximately 30 K implies that, indeed, the experimental points
can also be considered as absolute values of the sound attenuation. The behavior of the ab initio data
displayed in figure 2.12b is typical of what could be expected from the temperature dependence of the
inverse lifetime: a slow growth starting from a finite value at low temperature, which eventually becomes
linear, in this case above 90 K (not shown).
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Chapter 3

Thermal conductivity

In this chapter we will review the theory of thermal transport in the Single Mode Approximation (SMA)
with a particular attention to the so-called “extrinsic” scattering sources, i.e. sources other than the
“intrinsic” phonon-phonon scattering, which we have seen in chapter 2. The code developed by the
author (see appendix D) also includes more advanced techniques that SMA: the exact solution of the
Boltzmann transport equation and the inclusion of off-diagonal terms required for the generalized theory
of thermal conductivity in crystals and glasses as develped for reference 32. However for the scope of this
work we will focus on the treatment of boundary and disorder effects.

Results in this chapter are adapted from Ref. 133 and Ref. 25. More details about the ab initio calculations
are available in the original research papers.

3.1 Treatment of finite samples
3.1.1 Scattering mechanisms in finite crystals
The behaviour of lattice-driven thermal conductivity as a function of temperature has a typical shape
which is mostly independent of the material : at high temperature it decreases as 1/T , at lower tem-
perature it has a maximum, then going towards zero temperature it decreases sharply to a finite value.
The behavior of the lattice thermal conductivity at high temperature is determined by the anharmonic
phonon-phonon interactions [134] with a contribution from defects. In the low temperature regime,
named after Casimir who studied it in the 1930’s [135], thermal conductivity is not a bulk property but
it depends on the sample finite size [135].

Theoretical studies of the Casimir regime pre-date the possibility to study thermal conductivity by
numerically integrating the phonon anharmonic properties [6, 135, 136]. The standard approach consists
in modeling the sample boundaries as black bodies that absorb a fraction of the colliding phonons, reflect
the rest, and emit phonons to maintain thermal equilibrium. These works use geometric calculations,
valid in the linear regime where only the acoustic phonons are taken into account, to predict the low-
temperature thermal conductivity, usually with a single free parameter: the surface reflectivity. Invariably
they assume a simple geometry for the crystal, such as a long cylinder or a long square parallelepiped
with a temperature gradient between its opposite faces; in a shorter cylinder with polished faces the
model requires the inclusion of multiple internal reflections [136].

With the arrival of more powerful numerical techniques, it has become more effective to model the surface
at the phonon level, as a scattering probability. The probability of scattering from the boundaries can
be combined with the probability of scattering due to phonon-phonon interaction in accordance with
Matthiessen’s rule [16].. This approach has been used in more recent literature [15] while keeping the
assumptions of the long cylindrical geometry, not appropriate for application to thin films, where a
temperature gradient can be applied orthogonally to the film lateral extension.

In Fig. 3.1 we have schematically depicted the possible scattering events responsible for limiting lattice-
driven energy flow, we will briefly review them but for detailed discussion we redirect the reader to
Ref. 132. Mechanisms (1) and (2) are the intrinsic scattering processes: (1) is the “normal” (N) scattering,
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(4) (6) (7)(5)

G

Figure 3.1: Possible scattering mechanisms in a slab-shaped crystal. 1) Normal momentum-conserving
scattering (does not limit thermal transport). 2) Umklapp scattering. Absorption by: 3) point defects or
isotopic disorder, or 4) rough “black” surface, with black-body emission to maintain thermal equilibrium.
5) Reflection by a rough “white” surface. 6) Reflection by a smooth surface. 7) Transmission through an
intercalated surface.

it conserves momentum and does not limit thermal conductivy. N scattering is only important at very low
temperature (a few K). (2) The umklapp (U) processes, that conserves crystal momentum modulus the
addition of a reciprocal lattice vector, are the main limiting factor at high temperature and the prevalent
intrinsic scattering mechanism. When studying thermal conductivity in the single-mode relaxation-time
approximation (SMA), it is assumed that U scattering is dominant and that the scattered phonons are
thermalized, i.e. that on average they are scattered toward the equilibrium thermal distribution. This
approximation is very robust and works to within a few percent in a large range of temperatures and
materials [74].

Diagram number (3) depicts the Rayleigh scattering with a point defect, which could be a vacancy [14], a
substitutional defect or isotopic disorder [16]. Finally, events (4), (5) (6) and (7) are possible interactions
between a phonon and the sample boundary: (4) is adsorption and re-emission by the surface; (5) is
inelastic reflection by a “white” surface. We remark that, as it has been shown in Ref. 136, events (4)
and (5) are equivalent from a thermal-transport point of view, we will just use (4) from here on. Further
on, (6) is elastic reflection, where the momentum component parallel to the surface is conserved but the
orthogonal component is inverted. Reflections can limit thermal conductivity in the direction orthogonal
to the surface. Finally, in (7) a phonon can cross the boundary without scattering, this is of course not
possible if the sample is suspended in vacuum, but can be the case if the sample is composed by multiple
mis-matched segments, or if it contains stacking defects.

In order to describe the interface, we introduce three dimensionless parameters: the absorption fraction
fa, the reflection fraction fr and the transmission ft, these are the probabilities that a phonon will undergo
process (4), (6) or (7) respectively when it collides with the boundary. The condition fa + fr + ft = 1
holds. In general these parameters may depend on phonon energy and its incidence angle, they can be
computed using molecular dynamics techniques [137]. A special limit case is a very rough surface for
which fa = 1.

3.1.2 Thermal transport in the single-mode approximation
In the single mode approximation (SMA) the thermal conductivity matrix is:

καβ = ~2

N0ΩkBT 2

∑
j

vα,jvβ,jω
2
jnj(nj + 1)τj (3.1)

Where j is a composite index running over the phonon wavevectors q in reciprocal space and the phonon
bands ν; N0 are the number of q-points used to sample the Brillouin zone, Ω is the unit-cell volume,
kB is the Boltzmann constant and T is temperature. Inside the sum, the composite index j stands for
the band index ν and the wavevector q; then ωj = ων(q) is the phonon frequency, vj = ∇qων(q) is
the phonon group velocity; α and β are cartesian directions (x, y, z) nj = n(ων(q)) is the Bose-Einstein
distribution and τj is the phonon relaxation time, or inverse full-width half-maximum [25].
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3.1.3 Thermal transport in thin film crystals
In order to progress further we have to take into account the real geometry of our sample. In this chapter
we will consider two cases: (i) a thin film of thickness L along direction z and virtually infinite in the
other two directions with two very rough opposing surfaces; (ii) bulk material intercalated with partial
planes of one element, or stacking defects, which is a common kind of crystal defect [138, 139], at an
average distance L.

In case (i) we consider a phonon emitted from a surface that moves toward the opposite surface with a
z component of its group velocity vz. After a time L/vz, the phonon will reach the other surface and
be absorbed with probability fa, giving the first phonon scattering rate γ(1)

a and the relaxation time
(τ (0)
a )−1 = fa

vz

L . If it is not absorbed (probability fr = 1− fa), the phonon will be reflected back toward
the initial surface with identical speed and it will undergo a second absorption/reflection process. The
probability of a third reflection is f2

r , for the nth reflection is is f (n−1)
r . After summing the geometric

series, the total effective lifetime is:

(τa)−1 = 2γa =fa
vz
L

∑
i=1,n

f i−1
r = vz

L

(
fa

1− fr

)
. (3.2)

For boundary scattering, fa = 1 − fr conveniently cancels out giving τa = L
vz
, but we prefer to leave

eq. 3.2 in a general form to consider more general cases. Furthermore, if a phonon is reflected, its velocity
component that is orthogonal to the surface will be inverted. We can account for this possibility in eq. 3.1
renormalizing vz in the following way: a fraction fr of the phonons will change the sign of vz, a fraction
of them will hit the opposite boundary, be reflected a second time and change sign again, and so on.
The material is traversed in a “flying” time τf = L/vz. During this time phonons are scattered at a rate
Px = τ/τf , resetting the process. With τ being its total (intrinsic and extrinsic) relaxation time. This
can be expressed as:

ṽz =
∑
i=0,∞

(−τf
τ
fr)ivz = vz

(
1 + τ

τf
fr

)−1
. (3.3)

Again, we do not replace τf with 1−τa because we want to keep this equation as general as possible.

In case (ii), a bulk material intercalated with planes, the reasoning is very similar, with the caveat that
1 − fa = fr + ft, although for an atom-thin intercalated layer we can safely assume that fr is almost
zero.

The final formula for κ becomes:

καβ = ~2

N0ΩkBT 2

∑
j

ṽα,j ṽβ,jω
2
jnj(nj + 1)τ totj (3.4)

With ṽ from eq. 3.3, and τ comprises all the scattering terms, summed with the Matthiessen’s rule:

τ tot =
(
τ−1
ph−ph + τ−1

a + ...
)−1

(3.5)

where additional scattering terms like point-defect scattering, can be added.

3.2 Applications
We report in the next sections a few examples of published applications. These examples highlight some
specific difficulties of treating pathological materials: the non-linear acoustic band present in Graphene
and the high amount of doping and semi-ordered defects in Bi2Se3.

3.2.1 Graphene and graphite
The intrinsic anharmonic thermal conductivity κL has been computed within the single mode time re-
laxation approximation using Eq. 2.10 . For the two dimensional materials (graphene monoloyaer and
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Figure 3.2: In-plane thermal conductivity obtained within SMA (thick solid line) and its decomposition
into the contributions due to different phonon branches. The figure shows only the contributions from a
subset of the most relevant phonon branches. The sum of these partial contributions is the thin solid line
near to the total conductivity. In order to compare more easily the curves, the single branch contributions
of graphite and bilayer are scaled by a factor 2. Dots are experimental data from 140.

bilayer) we have used the convention that the volume Ω in Eq. 2.10 is the surface planar unit cell mul-
tiplied by the inter-layer distance of graphite, 3.32 Å. Fig. 3.2 reports the thermal conductivity and its
decomposition into different branch contributions. In the temperature range considered, the conductivity
is almost entirely due to the acoustic and the quasi-acoustic branches. Calculations of Fig. 3.2 are done
for T > 200 K. Below that temperature, converged results can be obtained only by using a much finer
q-points grid than those presently used.

Let us, first, consider graphene. From Fig. 3.2, the ZA contribution increases by decreasing the temper-
ature (actually, it diverges for T → 0), while the LA and TA contributions are non monotonic and reach
a maximum near 300 K. The difference in the two behaviors can be understood by considering that, for
small T , the phonons mostly occupied have small q, and that, for q → 0, the anharmonic broadening
(the inverse of the τ appearing on the r.h.s of Eq. 2.10) of the ZA mode goes to zero at any T . This is
not the case for the broadening of the TA and LA branches, Fig. 2.3 . Now, let us compare in Fig. 3.2
graphene with graphite. The ZA contribution in graphene corresponds, in graphite, to the two separate
contributions ZA and ZO′. These two are quite different already at room temperature. Below room
temperature, the ZA increases and diverges for T → 0 (as for the ZA in graphene), while the ZO′ does
not. The TA contribution in graphene corresponds, in graphite, to the TA and TO′ ones. Above 200 K,
the TA and TO′ contributions are almost indistinguishable, in spite of the fact that only the TA branch
is actually acoustical. Important differences between TA and TO′ contributions appear only below 50 K
(not shown). The same considerations hold for the LA LO′ couple. By comparing in Fig. 3.2 graphite
with the bilayer, above 200 K, the overall behavior of the two systems is relatively similar, in spite of the
different dimensionality. Indeed, in the same temperature range, the total conductivity of two dimen-
sional graphene mono- and bi-layer and that of three dimensional graphite are relatively very similar,
Fig. 3.3, with a difference between graphene and graphite of less than 10%.

Fig. 3.2 also reports the measured in-plane thermal conductivity. This is done only for bulk graphite,
because of the abundance of experimental data. At present, experimental measurements on graphene
are lacking and contradictory. From Fig. 3.2, the calculated graphite conductivity (which is obtained
within the SMA) grossly underestimates the measured one, by about a factor two. It is unlikely that
this disagreement is due to density functional theory. Indeed, DFT reproduces very well the measured
graphite phonon dispersions, Fig. 2.1, suggesting that the most important quantities used in Eq. 2.10
are correct. On the other hand, as already explained at the end of Sec. 2.3, the thermal conductivity
calculated according to Eq. 2.10 derives from the single mode relaxation time approximation and not from
an exact solution of the transport equation. Indeed, according to Refs. 141, 142, the SMA cannot be
used to properly describe the in-plane thermal conductivity in graphitic materials and the exact solution
of ther Boltzmann transport equation is required. However, the results of Refs. 141, 142 are obtained
by using a semiempirical interatomic potential and a direct comparison with the present results is not
meaningful. Further investigation on this point is required.

We now consider the thermal conductivity along the z axis, perpendicular to the graphene planes. Fig. 3.3
shows calculations and compares them with measurements. The quasi totality of the conduction is due
to the acoustic and quasi-acoustic phonons polarized along z and, as expected, the conduction is much
smaller than the in-plane one. The transport in-plane and the one along z are quite different. The
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Figure 3.3: (Left) In-plane thermal conductivity calculated within the SMA for for graphene single and
bilayer and bulk graphite. (Right) Thermal conductivity of graphite along the direction orthogonal to the
planes. and its decomposition into the contributions given by different phonon branches. Measurements
(exp.) are from 140 and should be compared with the line labeled as “total”.

phonons relevant for the z conduction are much more localized and have much smaller velocity. Indeed,
only phonons with a non-zero dispersion along the z-axis can conduct since they have a non-zero velocity
and, thus, can give a contribution to the sum in Eq. 2.10. These phonons belong a small region around the
Γ-A line. We also remark that the the z conduction is extremely sensitive to the value of the c/a lattice
parameter. Indeed, a small change in c/a results in a systematic increase or decrease of the frequencies
of all the phonons relevant for the transport along z, see Fig. 2.1. Moreover, a systematic rescale of
phonon frequencies by a certain factor λ results in a rescale of the conduction by a factor which can
be much bigger than the initial λ (see Eq. 2.10). The agreement with measurements from Fig. 3.3 is,
thus, satisfactory and we judge it compatible with the assumption that the SMA correctly describes the
thermal transport along the z axis.

3.2.2 Bulk Bi2Se3

An important application of ab initio thermal conductivity is thermoelectricity. In particular, having an
insight at the nanoscale on the interaction between phonons and finite sample dimensions can guide the
development of more nano-structured materials with a higher thermoelectric efficiency. In this section,
we present a study of thermal conductivity in Bi2Se3, where the use of ab initio simulation allowed us
to characterize the prevalent type of crystal defect found in the bulk structure, and to predict, to some
extent, the reduction of thermal conductivity observed in nano-slabs of 20-100 nm thickness.

More detail about these calculations are available in Ref. 133.

We have initially studied the phonon-driven thermal conductivity in the bulk phase as experimental
data is available with good precision in a wide range of temperature. In particular we have taken as
reference the data of Navratil and coworkers [143], where they estimate the fraction of lattice-driven and
electron-driven transport.

In Fig. 3.4 we plot the experimental data of the in-plane thermal conductivity κ‖ measured in Ref. 143,
side by side with calculations from 2 K up to 400 K, in the RTA (we checked that the exact inversion
of the Boltzmann transport equation yield practically identical values). As it can be seen, the room
temperature behaviour of the lattice contribution to κ‖ is in perfect agreement with our calculation of
the intrinsic thermal conductivity. This agreement is possible thanks to the inclusion of lattice defects in
the model, as explained in the rest of this section.

Below 20 K, κ‖ is limited by extrinsic scattering processes such as the scattering with sample borders,
with the isotopes or/and with lattice defects. As Navratil et al. used a large mono-crystal, and isotopical
effects are negligibles in Bi2Se3,1 only lattice defects can explain the low temperature behaviour.

According to literature [139], two kind of defects are common in Bi2Se3 crystals: point-defect vacancies

1The relative mass variance of Selenium isotopes is only 0.046%, while Bismuth has only one stable isotope
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Figure 3.4: In-plane (i.e. orthogonal to c axis) κ measured by Navratil [143] (rounds) compared to
simulations including the effect of Se vacancies (left) and Bi2 layers intercalations (right) defects on κ,
excess Bi2 is expressed as average inter-plane distance and as ppm. The behavior at very low temperature
(i.e. below 2 K) is not shown as it could suffer from the finite k-point mesh used in the calculations, due
to the difficulty of converging the conductivity in the zero temperature limit

.

of Se, and Bi2 partial-layer intercalation. Each Selenium vacancy contributes around two charges to
the total doping, which means that at a doping concentration of around 1018 − 1019 e/cm3 the fraction
of missing Se atoms is of order 100 − 1000 ppm. We have simulated this defect concentration using a
Rayleigh point-scattering model, assigning to each vacancy an effective mass as in Ref. 14. We found that
this kind of defect scattering is too weak to explain the low-temperature drop in thermal conductivity.
Even taking an unrealistically high point-defect concentration, such as 50 000 ppm (5%), the correct
curve shape at low temperature is not reproduced. Finally, we remark that using a more accurate, i.e. ab
initio, estimate of the defect cross-section would be equivalent to a change in defect concentration, but
would not change the shape of the curve.

On the other hand, if we assume the presence of Bi2 partial layers, we can include it in the simulation using
Sparavigna-Casimir scattering theory, i.e. using an effective model that includes a scattering time which
is proportional to the ratio between the phonon mean free path and the sample size. We tuned the average
inter-defect distance to fit the temperature of maximum κ, around 10 K. The theoretical position of the
maximum is a better fitting parameter than its absolute value, as the latter is very difficult to converge
at low temperature in simulations. Notwithstanding that, the calculation reproduces the absolute value
quite well, which strengthens the validity of our assumption. In Fig 3.5, the best agreement is found
when the average distance between Bi2 planes is fixed at 5 µm. Comparing this value to the size of the
unit cell along c gives a concentration of excess Bismuth of around 100 ppm, and considering that each
additional Bi atom provides three charges, this is compatible with the measured doping concentration.

We note that the effect of Selenium vacancies and Bismuth partial layer intercalation is qualitatively
different: a increasing concentration of Selenium vacancies causes a global reduction of κ, on the other
hand increasing the frequency of Bismuth partial layer intercalation moves the maximum of κ toward
higher temperatures, without changing its high-T value. If we combine the two types of defects, we
observe that Selenium vacancies have virtually no effect until their concentration is greater than 100ppm,
after which scattering from vacancies lead to a considerable reduction in κ at higher T. As a consequence,
the best match remains a concentration of around 100 ppm Bismuth partial layer intercalation with
100 ppm or less Selenium vacancy. This is compatible with the high n-type concentration (' 1019 cm−3)
of the bulk material measured.

3.2.3 Bi2Se3 thin films
Thermoreflectance measurements provide the total out-of-plane (κ⊥) thermal conductivity which is the
sum of the electronic and lattice contributions. The lattice contribution has been estimated after mea-
suring the in-plane electronic conductivity in thin films and estimating the out-of-plane electronic con-
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Thermal conductivity:
Thickness Total (measured) Lattice (estimated)

(nm) (W/m·K) (W/m·K)
18 0.39 0.19
30 0.52 0.32
53 0.53 0.33
105 0.56 0.36
191 0.68 0.48

Table 3.1: Out-of-plane thermal conductivity of Bi2Se3, the experimental error bar can be evaluated to
20%.
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of Ref. 144.
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ductivity from the measured conductance anisotropy of bulk Bi2Se3, as studied in detail in 133.

Transport measurements performed attest that our thin films are n doped and present a metallic behavior
with a carrier’s concentration bracketed by 1 − 2 × 1019 cm−3, µ ∼ 300 − 400 cm2/V·s and ρ‖ ∼
1− 1.15 mΩ·cm at room temperature.

Thus a coarse evaluation of the electronic contribution to the in-plane conductivity kel,‖ can be given
using the Wiedmann-Franz law kel,‖ = LT/ρ‖ with L the Lorentz number, ranging between 2 and 2.2×
10−8 V2K−2. Consequently kel,‖ is bracketed between 0.4− 0.7 W/m·K.

In table 3.1 we report the measured values for the total and lattice thermal conductivity, obtained by
subtraction the estimated electronic contribution. In Fig. 3.6, we compare the measured lattice thermal
conductivity with the simulations. The agreement is within the experimental errorbar. Including internal
reflection effects (dashed line in the figure) does improve the agreement but is not sufficient to explain
completely the discrepancy for the smallest slab. This may indicate that a simple Casimir model is not
sufficient for such a thin sample, a more detailed description of the interaction of phonon with the surface,
including q and ω dependence could improve the agreement. Finally, the laser penetration depth in the
sample (around 10 nm) could play a role for the thinnest slabs, although there is no simple way to include
it in the simulation.

We have also tested the approach of Ref. 144 (red lines of Fig. 3.6), which consists in cutting off completely
the contribution of phonons that have mean free path τv larger than the sample dimension. The behaviour
is relatively similar, but the predicted value of κ is considerably larger for the smaller samples.
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Chapter 4

Beyond Perturbation Theory

The first motivation for developing beyond-harmonic methods for the description of phonons are crystal
phases which are stabilized by temperature. These materials, have a higher symmetry phase, which can
gain a bit of energy by breaking symmetry at low temperature. When the phonons free energy is sufficient
to overcome the small energy gain the high symmetry phase can stabilize, although the curvature of the
static electronic energy remains negative.

It is not possible to approach these systems with perturbation theory on top of the harmonic hamiltonian,
as the trial ground-state is not stable. Non perturbative methods have been developed since the 1950s,
initially by Born and Hooton [145, 146] and other groups all the way until the 2010s [42, 147, 148].
Initially based on semi-empirical potentials they are nowadays used in conjunction with DFT or, more
recently, with classical force fields fitted on DFT, i.e. via machine learning.

These methods differ on how the potential energy surface (PES) is sampled and how the vibrational
properties (harmonic force constants, frequencies or vibrational spectrum) are extracted from the calcu-
lations. Ab-initio molecula dynamics (MD) methods is a versatile, if not very efficient method, sample
the fully anharmonic PES. From sufficiently long MD trajectories the phonons can be extracted using
normal-mode analysis (NMA) [33, 149] or velocity autocorrelation function (VACF) method[34]. The
efficiency of VACF can be improved projecting the atomic velocities on harmonic phonons modes from
DFT in a commensurate unit cell [35]. Standard MD methods do not take into account quantum nu-
clear effect, which can be problematic for hydrogen atoms, and especially for hydrogen-based metallic
materials which have been found to be record breaking superconductors. This limitation can be overcome
using Path-Integral Molecular Dynamics, although at a larger computational cost, and suitable“quantum”
position-position or force-force correlators [37, 38].
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Figure 4.1: The Lennard-Jones potential approximated with its Taylor expansion around the minimum,
or fitted with a second order polynomial over a large range of points. Which approximation is “better”
depends on the range of application.
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On the other hand, are the methods which sample the PES stochastically, which requires an approximated
PES model to start the sampling. Some early examples are the self-consistent phonon (SCP) method and
the Self-Consistent Ab-Initio Lattice Dynamics (SCAILD) by Souvatzis et al. [150], which assume the
distribution of atomic displacement due to thermal rattling to be gaussian, i.e. harmonic. Roekeghem
extended SCAILD to QSCAILD, which uses a quantum mean square thermal displacement matrix [39,
40].

Sticking with the harmonic sampling, but using a theoretical framework based on the ion displacements
density matrix is the Stochastic Self-Consistent Harmonic Approximation (SSCHA) [41] which involves
minimizing the phonon free energy capturing both nuclear quantum and anharmonic effects. Other SCP-
based methods include SCPH proposed by Tadano et al.[42], where anharmonic frequencies are computed
from the pole of the Green’s function and higher order effective force constants from “compressive sensing”
[151].

Temperature-dependent Effective Potential (TDEP) is a method of computing force constants (FCs)
from ab initio MD forces that are “optimal” for a given temperature. This method was first proposed
by Esfarjani and Stokes [43], where the FCs are extracted from ab initio MD force-displacement data.
Hellman and coworkers [44, 45] apply a similar procedure, but starting instead with zero-temperature
harmonic FCs and solve a least-square fit to obtain the FCs that minimize the difference between the “real”
ab initio forces and the “harmonic” 2-body force computed from FCs. This convention minimizes the
residual “anharmonic” force at the temperature imposed during the MD simulation. We have implemented
a reciprocal-space version of this method, as detailed in Section 4.1

Details of these methods are in the original articles of the authors and also in recent reviews by Esfarjani
et al. [152], and Hong et al. [153].

4.1 TDEP implementation
Our TDEP implementation reuses as much as possible the computational tools developed to compute
the phonon linewidth and thermal conductivity. For this reason, and at variance with other available
TDEP packages, it works mostly in reciprocal space, manipulating dynamical matrice, instead of using
real-space force constants. The process in divided in three steps: (i) identify a minimum number of
“phonon parameters” that are sufficient to describe the phonons for a given crystal over a grid of a given
size; (ii) compute the “harmonic forces” from the 2-body force constants, (iii) Optimize the parameters
to minimize teh difference between the harmonic and fully ab initio forces.

4.1.1 Phonon parameters
In the following list, we give a simple schematic description of the algorithm to decompose the complete
phonon dispersion in a very small number of independent minimal phonon parameter (MPP). This
algorithm is similar to the one used in the SSCHA method [41]. It is a crucial part of the TDEP algorithm
that each parameters to minimize spans a subspace which is orthogonal to all the others. Otherwise,
the minimization algorithm, which considers the parameters to be independent, will not converge and
overestimate its own precision. The procedure is presented in more detail in appendix B.5.

1. Symmetry analysis of the crystal:

- find the symmetry of the lattice and crystal

- construct a grid of Nq = n1 × n2 × n3 q-points

- find the Nw points that form an irreducible wedge of the Brillouin zone, Nw ≤ Nq

2. Symmetry analysis for every q-point in the wedge:

- find the small group of symmetry of the point

- construct a basis of Np(q) symmetric orthonormal dynamical matrices Bi(q), i = 1, Np(q)

- iterate obtain a total of Np =
∑
i=1,Nw

NP (qi) dynamical matrices that form a basis for all the
points in the wedge and, via symmetry, of the entire grid.
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With this basis we can decompose any dynamical matrix D(qj) which has the correct symmetry for any
point in qj the wedge as

D(qqj) =
∑

i=1,Np(qqj)

< Bi(qqj)|D(qqj) > Bi(qqj) (4.1)

Using symmetry, we can easily reconstruct the full dispersion from the irreducible wedge. The Np
parameters dij =< Bi(qqj)|D(qqj) > are the MPP, i.e. the minimum number of parameters required to
represent any phonon dispersion respecting a given crystal symmetry on a certain grid. Equivalently, as
shown in Section A.3, the MPP are sufficient to determine all the FCs up to given size of supercell, dual
to the grid.

We will not go in detail on these points, the interested readers can find an very detailed description of
the procedure in Appendix A and B. Table 4.1 shows the number of parameters required for different
systems of increasing size (atoms per cell and supercell size) and decreasing symmetry.

4.1.2 Minimization and fitting
The natural choice is to minimize the difference between the real ab initio forces FA and the harmonic
forces FH computed from the force constants. The χ2 to minimize can be defined as a sum over all the
coordinates, atoms in teh supercell and the many configurations sampled.

χ2 = 1
Ns

∑
α,I,i=1,Ns

|FAα,I(Ri)− FHα,I(Ri)|2 (4.2)

Where α = x, y, z is a Cartesian coordinate, I is the number of the atom in the supercell and i the
number of the step. When the sampling has a long correlation time, i.e. when using standard MD, it
is necessary to only include only a fraction of the steps (i.e. one every M) in the sum, otherwise the
correlation will cause the algorithm to underestimate its own accuracy accuracy, i.e. to stop too soon
during the minimization.

For generality, we could include a weight in the sum, keeping in mind that the sampling is optimal when
all the weights are equal, but leaving the possibility open to operate a global re-weight in order, for
example, to change the effective temperature of the sampling.

In practice, we have initially used the classic LMDIF method [154]. When LMDIF operates on the array
∆F = (∆Fx,1,1, ...∆Fz,Na,Ns

) with ∆Fα,I,i = |FAα,I(Ri) − FHα,I(Ri)| it can use all the 3 ×Na ×Ns ×Np
derivatives together, this is much more powerful that having access to only χ2 and its derivative with
respect to the Np parameters.

The Fortran77 library is efficient when used to minimize simultaneously M functions, in our case M =
3×Nat×Nsteps (number of atoms in the supercell, times number of dynamics steps) of N parameters, in
our case N = Nph (number of irreducibles phonons parameters, see Section 4.1.1). Even using a numerical
estimate of the Laplacian, it is extremely efficient, converging in less than 10 iterations. However, it does
not scale well for large problems. In larger systems, we can have upward of 1000 parameters, to be
minimized over millions of data points. For this reason, we have moved to a parallel implementation
(based on scalapack) developed ad hoc [155].

Table 4.1: Size dependence of phonon parameters for a 5,000 MD snapshots. Space group (SG), supercell
size, number of atoms in supercell (Nat), minimal phonon parameters (Nph), number of fitting points
(M = Nsteps × 3×Nat), and TDEP CPU time.

System SG Supercell Nat Nph FAI N (s)
Al Fm3m 225 2× 2× 2 8 4 2.00× 105 3
CsI Pm3m 221 2× 2× 2 16 13 1.20× 105 9
Zr Im3m 229 4× 4× 4 64 17 9.60× 105 3
SrTiO3 Pm3m 221 2× 2× 2 40 49 6.00× 105 42
MgO Fm3m 225 4× 4× 4 128 51 1.92× 106 98
MgSiO3 Pbnm 62 2× 1× 2 80 994 1.20× 106 28152
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Figure 4.2: Comparison of “harmonic” phonons from DFPT and “anharmonic” phonon at 300K obtained
via TDEP over and LD sampling in SrTiO3. The static DFT structure is unstable, but becomes stable
at finite temperature. Ref. A and B are 158 and 159.

4.1.3 Choice of sampling method
A weakness of the TDEP method is that sampling the PES with NVE1 ab initio molecular dynamics is
very inefficient: because each step is derived from the previous ones following a deterministic equation of
motion, subsequent steps are strongly correlated. Depending on the condition (temperature, symmetry,
range of frequencies) tens or even hundreds of intermediate steps have to be skipped in order to have an
un-correlated sample.

To avoid this problem, we have used the approach of Langevin dynamics (LD), which contrary to its
name is more a Markov chain process than real dynamics. In LD, at each step the effective force acting
on the atoms is composed of three terms: the ab initio force fai (including the Born-Oppenheimer force
and Ion-Ion terms), a damping term −γv and a stochastic force with a given distribution ηi.

ṗi(t) = − γpi(t)︸ ︷︷ ︸
damping

+ fi(q(t))︸ ︷︷ ︸
ab initio

+
√

2mikBTηi(t)︸ ︷︷ ︸
stochastic

(4.3)

The damping term ensures that correlation is exponentially decaying, while the stochastic force keeps the
temperature constant. This procedure can be much more efficient than a classic Metropolis algorithm of
try-test-discard because it exploits the distribution gradient (i.e. the force). We refer to literature for
further justification [37, 47, 62, 156].

If integrated in a smart way [47] the equation of motion does not depend strongly on the value of γ
and the correlation time can be as shorter than 5 time steps. Comparing the efficiency of the LD
methods with standrd NVE dynamics and hybrid approach which combines standard dynamics with
and advanced stochastic thermostat (MD-SVR) [157] is the current work of a PhD student under my
supervision [46].

As a textbook example, we show in Fig. 4.2 the difference between the “zero temperature” phonons in
SrTiO3, obtained from a simple DFPT phonon calculation and the “finite temperature” phonons, from
the same structure, but obtained with the TDEP procedure fit over a LD simulation performed at 300 K.
The mechanical instability of the crystal is removed by temperature, and the phonon bands match very
closely experimental results from literature.

1Constant numbe of particle, Volume and total energy
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4.2 Perspectives
We have see between Chapter 2.1 and 4 the subsequent developments of theory from harmonic crystal,
to include perturbative anharmonicity, and to treatment of finite temperature via the simulation of
the full lattice dynamics. These developments of the theory have allowed us to correctly reproduce
the characteristics of phonon dispersions, from simple widening of the phonon lines in layered carbon
materials (graphene, graphite), to interpreting the detail of sound waves attenuation in GaAs, to the
peculiar behaviour of hydrogen ions dissolved in a Palladium matrix, and their strongly anharmonic
vibrational spectra, including asymmetric and satellite peaks. We have also seen how the inclusion of
anharmonic effects allow us to predict thermal transport properties, in simple materials and, with some
additional assumptions, in complicated systems including disorder and finit size effects.

There are however, a heap of problems that are still unsolved, that are only solved under simplified
assumption that do not allow a full ab initio treatment of the system, or that are solved on a per-case
basis with a large amount of system-specific work. These constraints, do not allow high-throughput
simulations nor application by less specialized scientist and engineers. Here is a tentative list, with some
commentary:

• The complex interplay of phonon and electrons, i.e. thermal conductivity including full electron-
phonon effects. The presence of independent electron and phonon population and, the vastly
different energy scale involved in the excitation of these two particles. On a event more difficult
level, we can have out-of-equilibrium phonon and electron populations, with possibly different
temperatures.

• The treatment of phase transition. When approaching a transition, perturbative methods fail,
because of the instability of harmonic phonons, and MD-based methods become prohibitively
expensive and unreliable, as strong bias in the distribution of the atomic displacements makes
hergodicity difficult to attain. The enforcement of some symmetry can help in exploring the phase
space, but is a very human-guided process, and such prone to bias and errors. The combination
of unbiased phase-space exploration techniques (such as metadynamics [160]) with TDEP or time-
correlators [37] methods may be a future approach. The use of machine-learning methods to
increase the sampling time with a reasonable computation cost may also

• High-entropy alloys or simply non stoichiometric crystals are another class of important problems
that are difficult to treat with current techniques. On on side, “reciprocal-space” techniques, are
suitable for large perfect crystals, possibly with the insertion of some disorder via semi-empirical
or non-equilibrium Green-function techniques [161]; on the other hand, even the most advanced
“real-space” approaches [52, 162] require very large and expensive supercells when an important
fraction of heath carriers have long mean-free paths.

The study of these topics will certainly be central for the next decade. For what the author is concerned,
the first point is the topic of new collaborations [99] with the aim to develop a more sophisticated solver
of that Boltzmann transport equation, capable of taking into account out-of-equilibrium populations.
The most direct application of the development is the study of thermo-electric materials, where the
interplay between phonon and electrons is crucial to differentiate between a bad conductor and a good
thermoelectric.

The second point, is also part of current developments, i.e. in Ref. 37, combining quantum correlators
(a more rigorous approach than TDEP) with advanced techniques for dynamical sampling. Possible
applications range from the study of hydrogen based materials, requiring a quantum treatment of nuclear
motions, in combination with advanced density functional theory techniques, and the characterisation of
metastable structures.

Finally, the third point will be the subject of future research, in order to push forward the research on
thermal properties under deep Earth mantle conditions [49], which include extreme temperature and
pressure and disordered minerals (es. FexMg1−xO) including applications to the study of geological
properties of other planets.
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Appendix A

Dynamical matrices and Force
Constants

Small displacement of the atoms in a crystal can be be approached in two ways: (1) as a combination of
atoms moving individually, and independently from all the other or (2) as a combination of monochromatic
perturbation. In a monochromatic perturbation all the atoms move in unison, with a certain periodicity
which is described by the perturbation wavevector q. The two kind of perturbation are linked to each
other by Fourier transform. Before seeing this relation, we need some definitions.

Let’s describe the crystal as a collection of unit cells, each unit cell is identified by the a direct-lattice grid
vector RJ = N1

Ja1 +N2
Ja2 +N3

Ja3 with a1,2,3 being the lattice basis vectors, and N1,2,3
J relative integers:

...,−2,−1, 0, 1, 2, .... We can see N1,2,3
J both as the coordinates of RJ in crystalline (aka fractionary)

coordinates and as the index of cell RJ , i.e. the cell that has RJ as its corner. For this reason, we will
drop the J label from here on, ad use just R to refer both to the lattice vector and its cell.

Inside each unit cell one has a certain number Na of atoms, which are, at the equilibrium, at position τi
(i = 1, ..., Na) relative to the corner R of their cell. At finite temperature (or because of zero-point motion)
the atoms will move around this equilibrium, at a give moment their displacements from equilibrium are
ui,j . The position of atom i in cell R is then going to be

ri,R = R + τi + vi,R (A.1)

A.1 Force constants
Let’s see case (1) first. The derivative of the total energy with respect to the position of two atoms is
called force constant:

FC (α, i,R;β, i′,R′) = ∂2E

∂rαi,R∂rβi′,R′

(A.2)

Where α and β indicate a Cartesian direction (x, y, z). It can be easily shown, that it is equivalent to
take the derivatives w.r.t the displacements vi,R. Furthermore, as our crystal is periodic, the derivative
can only depends on the distance between R and R′, and not their absolute value. We can then take,
without loss of generality, R′ = 0 (as it is done in the Quantum ESPRESSO code)

A.2 Monochromatic perturbation (phonons)
Now we see case (2). We have a monochromatic perturbation when all the atoms move with a well defined
wavevector:

u(q)µ,j = Re
(
eµe

2πq·r) (A.3)

44



The reciprocal of the wavevector is the wavelength λ = 1/|q|. The vector eµ is the polarization of the
perturbation, which defines in which direction and to which extent each atom moves1. Any choice is
valid and gives rise to a different perturbation. It is usually represented as a vector of 3Na elements.
Its element correspond to the Cartesian components of each atom (atom 1 x, atom 1 y, ... atom N z),
and it is usually assumed normalized. In order to consider all possible perturbations, one has to take
3Na polarizations that form a basis of the 3Na-dimensional space. The simplest choice is to just take
the Cartesian basis (1, 0, 0, ...0), (0, 1, 0, ...0), ..., (0, 0, 0, ..., 1), but a more natural basis emerges when
dynamical matrices are introduced. It is customary to refer to the components of e with a single index
like ν when we take it to be any vector, on the other hand when using a Cartesian basis we can just take
it to be a couple ν = (α, i) with α = x, y, z and i the index of an atom in the unit cell.

Any arbitrary set of displacements vi,j can be projected on an harmonic perturbation:

v(q)µ =
∑
j

u(q)µ,jvµ,j (A.4)

v(q)µ =
∑
j

eµe
2πq·Rvµ,j (A.5)

Which looks a lot like a Fourier transform, except for the additional complication of the polarization e,
which we can safely hide/ignore most of the time. An alternative convention uses as argument for the
exponential 2πq · r, i.e. with a phase e2πq·τ . This choice is equivalent, as the phase difference can be put
in e, but not equal. It is often used by real-space code, one has to pay attention when importing data.
For simplicity, we will use the Cartesian basis, in this case, when taking the component along direction
alpha for atom i of v the polarization eµ, becomes just δα,i.

vα,i(q) =
∑
j

e2πq·Rvvαi,j (A.6)

This is the form that is used 99% of times, when we can forget e.

In order to construct the harmonic Hamiltonian, we are interested in the second derivative of the total
(ion-ion + ion-electron + electron-electron) energy w.r.t. the displacement of two atoms. An alternative
approach, the one used in plane-waves based DFPT, is to compute the derivative w.r.t to harmonic
perturbations. It is easy to show that the derivative can only be non-zero when the two perturbations
have opposite wavevectors q1 = −q2. Also note that v(−q) is the complex conjugate of v(q). We still
have to consider all possible 3Na × 3Na combination of polarizations, in the same way as for the FC we
have to derive w.r.t all the atoms in the cell and Cartesian directions. The derivative is the dynamical
matrix, is usually computed in the Cartesian basis

Dq(µ; ν) = ∂E

∂vµ(q)∂v?(q)ν
(A.7)

A.3 Fourier transform
I’ll omit how to actually compute the derivative with respect to u(q) in DFPT, as it would take far too
long. What is important to keep in mind is that because u(q) is a periodic perturbation, we can use
the standard techniques (i.e. Bloch theorem), to do the calculation in a unit cell. On the other hand, to
compute the force constants in real space (by finite differences aka frozen phonon), we need in principle
the entire infinite systems, and, in practice, a system at least as large as the distance between the two
atoms being moved.

The relation that links FC and phonons, can derived directly from eq. A.6. The formula is as follow-
ing:

Dq(α, i;β, j) =
∑

R,R′

e2π(q·R−q·RR′F (α, i,R;β, i′,R′) (A.8)

Dq(α, i;β, j) =
∑
R
e2π(q·RF (α, i,R;β, i′,0) (A.9)

1Note that it is completely independent from the wavevector q. It is entirely possible for q and e to be
orthogonal, these are “transverse phonons”, if q and e are parallel, the phonon is “longitudinal”.
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By using translational invariance, we got rid of one of the two sums. The inverse is just:

F (α, i,R;β, i′,0) = 1/Ω
ˆ
d3qe−2π(q·RDq(α, i;β, j) (A.10)

Where Ω is the volume of the unit cell. We see this formula more commonly, in its discretized form:

F (α, i,R;β, i′,0) = 1/nq
∑

q
e−2πq·RDq(α, i;β, j) (A.11)

Where nq is the number q-points in the discrete grid.

A.4 Grid of q-points and supercell
Now we go in the other direction: we can compute the force constants on a finite grid of q-points, and
see want we can tell about the force constants. Let’s suppose that the grid is n× n× n, it has nq = n3

points in total, and the same number of points in every direction, this is of course not always the case
but the generalization is trivial and it streamlines the discussion. Let’s take a special R̃ = Na1, we want
to compute F (R̃) using eq. A.11. It is easy to show that if we add n to N we only get a phase factor
e−2nπq·a1 = 1. It is 1 because q is commensurate with n by construction. I.e. the FCs are periodic with
the periodicity of the supercell n×n×n. We only need the FCs for couple of atoms inside this supercell,
all the terms outside are periodic.

A.5 Fourier interpolation, recentering
If we could integrate over the q-points with an infinitesimal mesh, as in eq. A.10, we would obtain all the
force constant up to infinite distance. On the other hand, as we have see in the previous section, FCs
that are obtained from a n × n × n grid of q-points are periodic over a n × n × n supercell. However,
we can still expect that force constants from atoms that are far away are smaller than those for atoms
which are close to each other. In particular, if we take a very large grid, we will eventually find that all
the “distant” terms become negligible. The idea of Fourier interpolation, is to take the FCs that we have
and assume that the more distant terms are zero. This allows us to go back to reciprocal space at any
q-point as if we had an infinitesimal grid q-space.

The caveat is that the definition of “distant” has to take into account two facts: (1) Thank to periodic
boundary conditions, the opposite sides of the supercell are close to each other. (2) In practice, an atom
may not be inside the unit cell to which it pertains, or closer to its R than to any other lattice vector.
I.e. we cannot use the cell-cell distance (R −R′) only the atom-atom distance (r − r′) is reliable, and
we must take care to always use the minimum distance between all periodic copies of atoms.

In order to see this more clearly, we have to write it down in algorithmic terms. First of all, let’s define the
super-lattice whose unit cell is the super-cell defined by the vectors A1 = na1, A2 = na2 and A3 = na3.
We will use the letter T to refer to a vector of this super-lattice: T = T1A1 +T2A2 +T3A3, with integer
coefficients T1,2,3 = ...,−2,−1, 0, 1, 2, ...

We define the “PBC-distance” between two points r and r′ as the min |r− (r′ + T)|T. In practice, we
only need to search for the minimum for T1,2,3 in a limited range ±2 or ±3 is sufficient is almost every
real-world case. One can see that what we are doing is to construct a Wigner-Seitz cell of the super-lattice
around r and take the r′ which is inside it. It may happen (very often in practice) that r′ falls exactly on
a surface, edge or corner of the WS cell, in this case there are several choices which give the same distance;
we will need to keep this in mind later. We will says that two atoms at position r and r′ are “nearby” if
they are inside the super-WS cell centered on each other, or equivalently if their regular distance is equal
to their PBC-distance, and that their are “distant” otherwise. If there are several possible choice for the
PBC-distance we will call them “equivalent copies”, and their number will be Ne
The task is to construct the best approximation of the infinite FCs (F∞) from the periodic FCs (FCPBC).
Again, we can assume that the second R is zero, without loss of generality. The rule is:

F∞(α, i,R;β, i′,0) =


0 if r + R is distant from r′
1
Ne
FPBC(α, i,R;β, i′,0) if r + R is close to r′

(and they have Ne equivalent copies)
(A.12)

46



Considering all the equivalent copies is not strictly necessary. In the mathematical ideal case, and as
long as we are only interested in interpolating the dynamical matrix it makes no difference. In the
real world case, where finite precision is used, it helps preserving the correct symmetry that may cause
degenerate lines in the phonon dispersion to have slightly different values. Also, if using F∞ to compute
harmonic forces, as we will do in sec. A.6, not including all equivalent copies would break the crystal
symmetry.

It is important to note that using F∞ and FPBC to compute D(q) at a q from the initial n×n×n grid,
via eq. A.9, must give the exact same result (to numerical precision!). If the FC came from the inverse
Fourier transform of dynamical matrices, then exactly the initial value must be recovered.

Observations: (1) If the initial list of FPBC contains elements from exactly n × n × n unit cells, now
we can have more because the PBC-distance for a couple if atoms in the same cell, may be found for a
different T than for another couple in the same cell. (2) This centering operation is done in a peculiar
way in the q2r/matdyn code, using the wsinit and wsweight subroutines, the first constructs a list of
vectors R̃ that defines the WS cell of the lattice given in input, the second one checks if v · R̃ < |R̃|/2,
which ensures that v is inside the WS cell. (3) A simplified centering which takes just R inside the
Wigner-Seitz cell of the super-lattice is not equivalent, and not optimal, but will work for a sufficiently
fine grid. Even just ensuring that R1,2,3 is between −n/2 and −n/2 will work decently for sufficiently
fine grids. (4) In a numerical implementation the terms which are zero are not actually stored, the code
will just construct a list of the non-zero terms and only sum over them.

A.6 Computing forces from force constants
Let’s say that we have computed from ab initio the first and second derivatives of the total energy with
respect to displacement, i.e. the one-body and two-body force constants:

F (α, i,R) = − ∂E

∂vα,i,R
(A.13)

F (α, i,R;β, i′,R′) = ∂2E

∂vα,i,R∂vβ,i′,R′
(A.14)

We have put a minus sign for the linear term in eq. A.13 as it is customary. We may assume that F (i,R)
are all zero, i.e. that we are at the equilibrium atomic positions, but this is not necessary. We want
to compute the force acting on a specific atom (i,R) when we slightly move all the atoms by a set of
arbitrary displacements ui,R, itself included. In other words, we want to compute the first derivative of
the energy at the displaced coordinates. First of all, let’s express the energy as a Taylor’s expansion at
coordinates r + u

E(r + u) = E(r)−
∑
α,i,R

F (i,R)uα,i,R + 1
2

∑
α,i,R,β,i′,R′

F (α, i,R;β, i′,R′)uα,i,Ruβ,i′,R′ (A.15)

Now imagine we move an atom (i,R) by an additional amount ε along direction α. We simply differentiate
w.r.t. ε (and change sign, because it is a force), note that we get a factor 2 because the terms (i,R; i′,R)
and (i′,R′; i,R) are equal.

F (r + u)α,i,R = Fα,i,R −
∑
β,i′,R′

FC(α, i,R;β, i′,R′)uβ,i′,R′ (A.16)

It is important to note that the largest element of F (α, i,R;β, i′,R′) is typically F (α, i,R;α, i,R), i.e.
that the strongest effect that each atom feels depends on its own movement. Atoms that do not move,
will still feel an effect from all the ones that do.

We can use either F∞ or FPBC in eq. A.16, but the meaning of the two operations is different, and the
correct one depends on what we are trying to do. If we want to compare to an ab initio calculation done
in a supercell of the same size as the one used to compute the FCs, then FPBC should give the best
results. If we want to apply to a cell which is larger, than the range of the computed FCs, than F∞

are the correct choice as they don’t introduce spurious interactions between distant atoms and preserve
symmetry. For a smaller cell, they would give the same result, but FPBC is numerically cheaper.
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It is straightforward to extend this equation to include higher order terms. Now suppose you run ab initio
molecular dynamics simulations (aimd) using a supercell with a size that is commensurate with the size
of the grid used in generating the FCs (i.e. nq × nq × nq). At each time step, t, the displacement of an
atom from equilibrium will be

uβ,i,R(t) = rβ,i,R(0)− rβ,i,R(t) (A.17)

where rβ,i,R(0) is the equilibrium position of atom i, in cell R, along direction β, and rβ,i,R(t) is the
time dependent position. There will be N configurations for n-steps molecular dynamics. At each step,
we can express the harmonic force from Eq. A.16 as

F (t)α,i,R = Fα,i,R −
∑
β,i′,R′

Φ(α, i,R;β, i′,R′)u(t)β,i′,R′ (A.18)

where Φαβ is the harmonic force constant from DFPT

A.7 Translational invariance
For convenience, we want to store F (i,R, i′,0), which is all we need to do the Fourier interpolation.
However, at times we will need the general F (i,R, i′R′). The force constants in principle could be
recentered or periodic; here we start with the periodic case, which is easier.

One simple way is to pass by reciprocal space, i.e. compute the dynamical matrices on the original grid
(which we know is an exact operation) and then use Eq. A.11 in the general form with two R indexes,
i.e.:

F (α, i,R;β, i′,R′) = 1/nq
∑

q
e−2πq·(R−R′)Dq(α, i;β, j) (A.19)

This is not the most efficient way, if we have to do it over and over we use a map that tells us which
R′′ solves R′′ = R − R′ + T, given R and R′ with T a vector of the super-lattice. Then we know
that F (α, i,R;β, i′,R′) = F (α, i,R′′;β, i′,0), thanks to translational invariance and periodic boundary
conditions. This can be done by an exhaustive search, using the fact that in crystalline/fractionary
coordinates the lattice vectors are integer-valued.

If we are dealing with recentered force constants, periodic boundary conditions do not hold. In this case,
if R′′ is not in the list of non-zero force constants, it means that F (α, i,R;β, i′,R′) is also zero. One has
to be careful, because this condition may depend on i and j. The tricky part, is to construct a list of R,
for each R′, that (1) point to all the non-zero force constant elements and (2) only point to a small, and
possibly zero, number of vanishing force constants, in order to be efficient.

A.8 Acoustic sum rule
We want that the 2-body contribution to the force is zero if all the displacements are the same. We
simply take Eq. A.16 simplify all uβ,i′,R′ as they should be identical and find any residual:

1
2
∑
i,R

F (α, i,R;β, j,0) = θj,α,β (A.20)

We expect θj,α,β to vanish for any i, α and β. What happens in practice, is that because of finite precision
of ab initio calculations, we will get a non-zero residual. We will then proceed to enforce the condition,
by removing the residual from FC. There are several recipes to do this, the simplest one takes it away
from the on-site term, i.e F (α, i,0;β, i′,0′)→ F (α, j,0;β, j,0′)− θj,α,β .

Applying the sum rule and recentering the force constants are compatible operations. I.e. one can enforce
the sume rule on FPBC , then apply the recentering operation and get some F∞ which are still respecting
sum rules. This is not true for higher order force constants, which require more complicated mechanisms
to apply the sum rules.
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Appendix B

Basis of symmetric dynamical
matrices

B.1 symmetries of a crystal
A crystal has up to 48 symmetry operations. Each operation is a rotation, which can be expressed as
a matrix 3 × 3. To rotate a vector v, one simply does "S v". For a standard matrix M , one has to do
SMST .

The lattice respects a certain symmetry operation S if for all three basis vectors Sai = aj for every i.
Notably, i and j do not have to be the same. Because lattices that can periodically fill the space are in
limited number and need to have some regularity (at least, opposite faces need to be parallel) the possible
symmetry operations are also limited. Without going in too much detail, what we need to know is that
it is possible to find a set of "elementary" symmetry operation for a lattice, i.e. a group, which has some
special properties. In particular, if you combine two symmetry operation from a group, you get a third
one which is still in the group. All groups contain the identity, and the identity alone is a group.

When we add a basis, i.e. more than one atom in the lattice, it becomes more complicated. When we
rotate the lattice, also the atoms rotate. Let’s say the basis is τJi where J denote equivalent atomic type
(same element, same oxidation state, same spin) and i is the index of atoms of that type. The crystal
has symmetry operation S if SτJi = τJi′ + f + RJ

i for every i, J , where f is called a fractional translation
and has to be the same for every i, J , while RJ

i is qlattice vector, and can be different for different i, J .
In other words, the symmetry operation S has to send every atom to itself or another atom of the same
type, minus a global fractional translation and periodic boundary conditions.

B.2 Irreducible wedge of the Brillouin Zone
We say that a point qis invariant under symmetry operation S if Sq = q + G, i.e. if rotating q with
S sends it to itself, minus periodic boundary conditions. The set of symmetry operations that leave q
unchanged are called the "small group" of q. They are a sub-set of the symmetry operations of the crystal,
and they form a group. One special case is the Γ point (aka (0, 0, 0)) which has all the symmetries.

A useful feature is that, in a regular n×n×n grid of q-points, some points will be equivalent. I.e. given
a point q in the grid and a symmetry operation S of the crystal, it exist a point q′ in the grid and a
vector G of the reciprocal lattice such that

q′ = Sq + G (B.1)

In other words, points q and q′ are linked to each other by symmetry operation S. We can also define
the "star" of a q-point q, as the set of points q′ for which the condition of eq. B.1 is verified for at least
one symmetry operation of the crystal. It is possible to show that the number of q-points in the star
qtimes the number of symmetry operation in the small group of the same qis equal to the total number
of symmetries of the crystal.
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When doing a DFPT calculation, we can exploit this symmetry to reduce the number of points to
compute. I.e. we can detect the points in the grid that form a star and only compute one of them. We
do however, need to find a way to obtain the dynamical matrix D(q) from that of D(q′) as they are not
equal. We will see how to "symmetrize" the dynamical matrix in the next section.

B.3 Applying symmetry to dynamical matrices
Symmetrizing a dynamical matrix is not as simple as rotating it like a matrix, i.e. we cannot just do SDST
which only applies to 3×3 matrices, like the matrices of direct and reciprocal lattice vectors. On the other
hand, the dynamical matrix itself, can be decomposed in Na ×Na minors, each one pertaining to atoms
i and j which can be rotated as a matrix However, after the rotation the minor will not be pertaining to
atoms i and j, but to atoms i′ and j′ such that τi′ = Sτi + R and of course τj′ = Sτj + R.

Di′,j′(Sq) = SDi,j(q)ST (B.2)

For shorthand, we may refer to this operation as SDST , but it is important to keep in mind that is quite
more complex. One can show, that if we loop this expression over all i, j we will obtain all i′ and j′.
Equation B.2 can be used for two very useful tasks: (1) to symmetrize and (2) to reconstruct the star
from a single qpoint.

Let’s see symmetrization first. If the small group of q contains Ns(q) symmetry operations, when we
rotate D with any of these, it shall remain unchanged the same result. However, the dynamical matrix
is obtained as a sum over k-points: we can reduce the grid of electronic k-points with the symmetry
operations of the small group of q and apply symmetry after the sum. In this way, we can save a lot
of CPU time. In order to symmetrize D(q) we rotate it with all Ns(q) symmetries and average the
result.

D(q) 1
Ns(q)

∑
k=1,Ns(q)

SkD
rdx(q)STk (B.3)

Where Drdx(q) is the “reduced” dynamical matrix obtained by doing a partial sum over the reduced
k-points grid.

Second: recovering the star. In this case, after having computed D(q) ab initio, and symmetrized it if
necessary, we can rotate it to obtain D(q′) for all q′ in the star of q. In principle, using any one of the
symmetry operations that do q → q′ + G is sufficient. In practice, we use all the appropriate ones and
average the result, to better preserve symmetry.

If among the symmetries of the crystal there is one that send q into −q, i.e. Sq + G = −q, we can use
this fact to reduce the number of k-points for the electronic calculation. We can eploit it in a similar way,
but it will require adding a complex conjugate operation in order to convert D(q) to D(−q).

B.4 Defining a matrix-matrix scalar product
Dynamical matrices are hermitian, i.e. they have the property MT = M∗ (the transpose matrix is equal
to its complex conjugate). As a consequence, all their eigenvalues are real numbers. When defining a
scalar product A ·B between two hermitian matrices A and B we want it to have these properties: (1) If
A, B and C are hermitian matrices and s = A ·B, then also sC must be a hermitian matrix. This mean
in practice that s must be a real number. (2) If s = A · A then s is positive definite. A simple way to
define a scalar product that respect these rules is

A ·B = Tr[AB] (B.4)

Where Tr is the trace operation. It is easy to show that this definition respects the conditions above. It
is also easy to show that this definition is exactly equivalent to computing

A ·B =
∑
i,j

A?ijBij (B.5)

Which has the advantage of being computationally much faster (O(n2) instead of O(n3) where n is the
number of atoms), and easily extended to higher-order tensors.
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With a scalar product defined, we can construct a basis of orthonormal matrices for any matrix space
using the modified Graham-Schmidt (or any other similar) procedure.

B.5 The space of symmetric dynamical matrices
The generic 3Na × 3Na Hermitian matrix has (3Na)2 real-valued degrees of freedom (real number in the
diagonal and complex but pairwise conjugate numbers in the upper and lower triangles). However, as we
know that the crystal geometry and the q-point are sufficient to determine the small-group of symmetry
operations, we can wonder if the space of symmetry-compatible dynamical matrices is actually smaller.
The more straightforward way to see it, is to construct a basis of orthonormal matrices for this space.
The procedure is as follows:

1. Start with an initial guess of (3Na)2 hermitian matrices (see later on possible guesses)
2. Symmetrize all of them
3. Throw away all matrices that are zero, normalize the others
4. Apply the Graham-Schmidt algorithm
5. Throw away all the matrices which are zero

We are left with a set of Nq symmetry-compatible matrices, any dynamical matrix for this q, obtained
from real simulation of the crystal, must be exactly decomposable on this basis:

D(q) =
∑

k=1,Nq

(D(q) ·Mq
k )Mq

k (B.6)

Where Mq
k is the symmetrized basis.

In practice, Nq can be dramatically smaller than (3NA)2, i.e. as small as 1 for the Γ point of highly sym-
metric material, as typically between 5 and 10 for q points in a regular grid of two-atoms crystals.

Steps 4 and 5 are better done together, i.e. some care must be taken during the GS orthonormalization
to detect and immediately throw away the matrices that become zero, or the subsequent iterations may
break.

The choice of the initial guess is quite important, as it can make this procedure more or less robust. It is
especially important that the initial guess spans all the possible (3Na)2 dimensions, or we may lose some
fraction of the space.

A possible choice is to take matrices that are all zero except for

• 3Na different matrices with an 1 along the diagonal
• 3Na(3Na − 1)/2 with 1/

√
2 at i, j and j, i for every couple i 6= j

• 3Na(3Na − 1)/2 with i/
√

2 at i > j and −i/
√

2 at j < i for every couple i 6= j

Using random matrices should also work, and is a good test to check the resilience of the algorithm to
numerical noise.

Another possibility is to start from a trial "real" dynamical matrix for a certain system with the desired
symmetry and build the initial trial matrices as |ei >< ej |, or in matrix notation e†i ×ei, where ei are the
eigenvectors of the trial dynamical matrix. In this case, we can decide to exclude the eigenvectors that
correspond to zero eigenvalues, which will construct a basis that cannot break acoustic sum rules.

B.6 Extension to third order matrices
A D3(q,q′,q′′) calculation is fundamentally similar to a D2 one, the q point is generalized to a triplet
of points (q,q′,q′′). The small-group is the set of operations that leave all three q points unchanged,
i.e. the intersection of the small-groups of the three q’s. The number of symmetries that we can use is
often normally small. The star of q is generalized to a tri-star of the q’s. As in the 2nd order case, we
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can use time-reversal symmetry to obtain the matrix at opposite q’s by taking the complex-conjugate
of its elements. Furthermore, and specifically to the 3rd order, we can obtain the third-order matrix of
permuted q vectors simply by applying the same permutation to its indexes. The triplets that are linked
by a combination of a symmetry operation, permutation and time-reversal form a generalized-triple-star
(G3S). We do not check explicitly if a certain symmetry operation may send each q of the triplet into
another, but because we do permutation invariance we are not

In the practical case, some of these operations can be redundant, e.g. a certain rotation could be
equivalent to a permutation, or to time-reversal. To identify the G3S we take all the possible triplets
q + q′ + q′′ = 0 on a regular grid; for each triplet we generate its G3S and check if it is equivalent to
that on any previous triplets: if an equivalent triplet is found, the new triplet is discarded, otherwise it
is retained. This procedure allows for a spectacular reduction in the number of triplets; in the graphene
case 4096 possible candidates are reduced to only 88 independent triplets.

The D3 matrix are symmetrized averaging over the symmetry operations inside the G3S. If two of the
q vectors are identical (opposite) we enforce the permutation (permutation combined with reversal)
symmetry on D3. In this threatment we have non included the possibility of a symmetry operation that
combines a rotation with an index permutation; e.g. one of these two cases. As this kind of operations
are complex to implement for a limited benefit; we decided to not include them our code.

As we use symmetry to perform the DFPT calculation only on a reduced number of q points, these
points are in the irreducible Brillouin zone (IBZ). However, the third-order calculation depends on 3
points: if we can still limit the first one to the IBZ the second has to span the entire BZ. The third point
is q3 = −(q1 + q2) can even be outside the BZ. Instead of extending the initial phonon calculation to
all these points, we use crystal symmetry and translational symmetry to reconstruct ∂n(r)/∂uq on the
entire regular grid, and apply the translation operator (a phase factor eiG·r) to transform ∂n(r)/∂uqfrom
q to q + G.

We do not have a neat and simple definition of scalar product as in eq. B.4, an immediate generalization
of eq. B.5 with one more index produces a real number when computing the square norm, in order to
ensure that the product of two generic D3 tensors is real, we can add all possible permutation of the
indeces with a complex conjugate operation depending on the sign of the permutation, i.e. :

A3 ·B3 = 1
6
∑
i,j,k

A?ijkBijk +A?kijBkij +A?jkiBjki

+AikjB?ikj +AjikB
?
jik +AkjiB

?
kji (B.7)

which allows us to apply all the techniques used for the dynamical matrices to the third order matri-
ces.
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Appendix C

Implementation of 2n+1 theorem

This chapter is adapted from Ref. 25, minus a lot typographical errors in the expressions, which have been
fixed.

C.1 Third order calculation
Here we describe the method used to calculate the third order anharmonic scattering coefficients.

C.1.1 Kohn-Sham equations
Within DFT the total energy a system can be determined from the ground state electronic charge density
n. In turn, n can be obtained by solving the self-consistently the Kohn Sham (KS) equations[163] , which,
in a periodic crystal are:

[T kin + V KS]|ψk,i〉 = εk,i |ψk,i〉 (C.1)

V KS(r) = vion(r) + δEI[n]
δn(r) (C.2)

n(r) =
∑
k,i

θ̃k,i|〈ψk,i|r〉|2 (C.3)

In Eq. C.1, T kin is the single-particle kinetic energy operator, V KS is the KS potential, |ψk,i〉 are the
Bloch eigenstates with wavevector k, band index i, and energy εk,i. 〈r + R|ψk,i〉 = eik·R〈r|ψk,i〉, being r
the position and R a lattice vector. vion is the external potential due to the ions, EI[n] is the interaction
functional (Hartree energy plus exchange-correlation contribution). The sum in Eq. C.3 is done on a
sufficiently fine grid of k-points.

θ̃k,i is the occupation of an electronic state: θ̃k,i = 1 for valence band electrons and θ̃k,i = 0 for conduction
ones. The total energy of the system is:

Etot = Eion +
∑
k,i

εk,iθ̃k,i + EI[n]−
ˆ
δEI[n]
δn(r) n(r)dr, (C.4)

where Eion is the ionic contribution.

As they are written, the KS equations are suitable when the electronic gap is different from zero (semi-
conductor or insulator case). When the electronic gap is zero (metallic case) it is customary [121] to
introduce smearing function θσ(x), which is characterized by a smearing width σ, and which becomes
the step function in the limit σ → 0. The KS equation are still written as in Eqs. C.1-C.3, but now
θ̃k,i = θσ(εF − εk,i), where the Fermi energy εF has to be determined self consistently from the condition∑

k,i
θ̃k,i = N el, (C.5)
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where N el is the total number of valence electrons. In the metallic case, a proper definition of the energy
Etot requires [164] to add to Eq C.4 the term

∑
k,i

ˆ εF−εk,i

−∞
xδσ(x) dx, (C.6)

where δσ(x) = ∂θσ(x)/(∂x).

C.1.2 Linear response
The derivative of the electronic charge distribution with respect to the q periodic displacement uq defined
in Eq. 2.2 (for simplicity from now on we will drop the indexes α and s) can be determined from first
order perturbation theory [116]. For the metallic case, linear response can be implemented following
Ref. 164 or the equivalent approach of Ref. 103.

Let us consider a uniform grid of electronic k points and a phonon wavevector q which belongs to this
grid. First, one has to solve the KS equations and obtain the ground state change density n and the
corresponding KS wavefunctions |ψk,i〉. Then, one has to define a “cutoff” energy E which separates the
electronic states which are completely empty from those which are occupied or partially occupied. In
the semiconductor/insulator case, E is any energy within the gap, in the metallic case one can chose any
E ≥ εF +3σ. We define Pc as the projector on the manifold spanned by the empty states and Pv = 1−Pc
as the projector on the occupied or partially occupied states.

The derivative of the charge ∂n/∂uq and the derivative of the KS wavefunctions projected on the con-
duction bands |φq

k,i〉 = Pc|∂ψk,i/∂uq〉 can be obtained by solving self-consistently the equations:

[T kin + V KS + αPv − εk,i]|φq
ki〉 = −Pc

∂VKS

∂uq
|ψki〉 (C.7)

∂V KS(r)
∂uq

= ∂vion(r)
∂uq

+
ˆ

δ2EI[n]
δn(r)δn(r′)

∂n(r′)
∂uq

dr′ (C.8)

∂n(r)
∂uq

=
∑

k
〈r|
{∑

i

δ̃kiε
q
F |ψki〉〈ψki|+

v∑
i,j

θ̃ki − θ̃k+q,j
εki − εk+q,j

|ψk+q,j〉〈ψk+q,j |V q|ψki〉〈ψki|+

∑
i

θ̃ki
[
|φq

ki〉〈ψki|+ |ψki〉〈φ−q
ki |
]}
|r〉 (C.9)

α is a constant which is chosen in such a way that the linear system of Eq. C.7 is not singular.
∑v indicates

that the sum is to be performed only on the partially occupied states. δ̃k,i = δσ(εF − εk,i)

The first two terms in the right hand side of Eq. C.9 are different from zero only in the metallic case
and are written using the notation εq = ∂εF /∂uq and V q = ∂VKS/∂uq. εq = 0 for q6=0 and it has to be
determined self consistently from

εqF =
∑

k,i〈ψk,iV
qψk,i〉∑

k,i δ̃k,i
. (C.10)

In the second line of Eq. C.9 we have used the compact notation which reads: when the denominator is
equal to zero one has to substitute that expression with the corresponding limit. The same substitution
can be used when the denominator is very small in order to gain stability. Thus, when εki ∼ εk+q,j one
can substitute (θ̃ki − θ̃k+q,j)/(εki − εk+q,j) with −δ̃k,i. We, finally, remark that the present approach is
different from the the one described in 164 and that the |φ〉 wavefunctions presently defined are different
from the |φ〉 of 164.

C.1.3 Third order
Let us consider the three phonon displacements uq, uq′ , uq′′ associated with the wavevectors such that
q + q′ + q′′ = 0. By solving the linear response equations one can obtain ∂n/∂uq and the {|φq

k,i〉}
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corresponding to the three phonons. The third derivative of the energy can then be obtained from

∂3Etot

∂uq∂uq′∂uq′′
= 1

6

[
Ẽq,q′,q′′

+ Ẽq′′,q,q′
+ Ẽq′,q′′,q + Ẽq,q′′,q′

+ Ẽq′′,q′,q + Ẽq′,q,q′′
]

(C.11)

Ẽq,q′,q′′
= Zq,q′,q′′

+ ∂3Eion

∂uq∂uq′∂uq′′
+
ˆ

∂3vion(r)
∂uq∂uq′∂uq′′

n(r)dr + (C.12)

3
ˆ
∂2vion(r)
∂uq∂uq′

∂n(r)
∂uq′′

dr +
˚

δ3EI[n]
δn(r)δn(r′)δn(r′′)

∂n(r)
∂uq

∂n(r′)
∂uq′

∂n(r′′)
∂uq′′

drdr′dr′′

Following 102, for the semiconductor/insulator case, we can write:

Zq,q′,q′′
= 6

∑
k

∑
i

θ̃ki〈φ−q
ki |V

q′
|φq′′

ki 〉 −
v∑
i,j

θ̃ki〈φ−q
k+q,i|φ

q′

k−q′,j〉〈ψk−q′,j |V q′′
|ψk+q,i〉

 (C.13)

Following 103, for the metallic case:

Zq,q′,q′′
=

∑
k

{
6
∑
i

θ̃ki〈φ−q
ki |V

q′
|φq′′

ki 〉+

6
v∑
i,j

[
θ̃k+q,i〈φ−q

k+q,i|V q′ |ψk−q′,j〉 − θ̃k+q′,j〈ψk+q,i|V q|φq′

k−q′,j〉
]
〈ψk−q′,j |V q′′ |ψk+q,i〉

εk+q,i − εk−q′,j
+

2
v∑
i,j,l

[
〈ψk,i|V q|ψk−q,j〉〈ψk−q,j |V q′

|ψk+q′′,l〉〈ψk+q′′,l|V q′′
|ψk,i〉 ×

θ̃k,i(εk−q,j − εk+q′′,l) + θ̃k−q,j(εk+q′′,l − εk,i) + θ̃k+q′′,l(εk,i − εk−q,j)
(εk,i − εk−q,j)(εk−q,j − εk+q′′,l)(εk+q′′,l − εk,i)

]
+

3εqF

 v∑
i,j

δ̃k,i − δ̃k+q′′,j

εk,i − εk+q′′,j
〈ψk,i|V q′

|ψk+q′′,j〉〈ψk+q′′,j |V q′′
|ψk,i〉+ 2

∑
i

δ̃k,i〈ψk,i|V q′
|φq′′

k,j〉

+

3εqF ε
q′

F

(∑
i

δ̃
(1)
k,i〈ψk,i|V q′′

|ψk,i〉

)
− εqF ε

q′

F ε
q′′

F

(∑
i

δ̃
(1)
k,i

)}
, (C.14)

where δ̃(1)
k,i = ∂δσ(x)/(∂x)|x=εF−εk,i

. Eq. C.14 is written with a compact notation, which reads: when
one of the denominators in Eq. C.14 is zero one has to substitute to the corresponding term with the
limit obtained for that denominator going to zero. In particular, when εk+q,i ∼ εk−q′,j in the second line
of Eq. C.14, the argument of the sum can be written as

−
[
θ̃k+q,i〈φ−q

k+q,i|φ
q′

k−q′,j〉+ δ̃k+q,i〈ψk+q,i|V q|φq′

k−q′,j〉
]
〈ψk−q′,j |V q′′

|ψk+q,i〉.

The limits of the factor in the fourth line of Eq. C.14 are

for εk,i ∼ εk−q,j 6= εk+q′′,l :[
θ̃k,i − θ̃k+q′′,l

εk,i − εk+q′′,l
+ δ̃k,i

]
1

εk+q′′,l − εk,i
for εk−q,j ∼ εk+q′′,l 6= εk,i :[

θ̃k−q,j − θ̃k,i
εk−q,j − εk,i

+ δ̃k−q,j

]
1

εk,i − εk−q,j

for εk+q′′,l ∼ εk,i 6= εk−q,j :[
θ̃k+q′′,l − θ̃k−q,j

εk+q′′,l − εk−q,j
+ δ̃k+q′′,l

]
1

εk−q,j − εk+q′′,l

for εk,i ∼ εk−q,j ∼ εk+q′′,l :

−1
2 δ̃

(1)
k,i . (C.15)
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When εki ∼ εk+q′′,j one can substitute (δ̃ki − δ̃k+q′′,j)/(εki − εk+q′′,j) with −δ̃(1)
k,i .

Finally, once the the derivative in Eq. C.11 has been determined, one can obtain the phonon scattering
coefficients by combining Eq. 2.7 and Eq. 2.8. We also remark that

∂3Etot

∂uq+G∂uq′∂uq′′
= ∂3Etot

∂uq∂uq′∂uq′′

being G a vector of the reciprocal lattice. Thus, we have not lost of generality by imposing q+q′+q′′ = 0
at the beginning of the present section.

C.1.4 Ionic contribution
The second term in the r.h.s of Eq. C.12 is the third derivative of the ion-ion contribution to the total
energy, which is computed, as usual, using the Ewald sum technique [165]. The third derivative is

∂3Eion

∂uq,s,α∂uq′,s′,β∂uq′′,s′′,γ
=

δs′,s′′Zs′ Zs Fα,β,γ(q, ts′ − ts) +
δs′′,s Zs′′Zs′ Fα,β,γ(q′, ts′′ − ts′) +
δs,s′ Zs Zs′′Fα,β,γ(q′′, ts − ts′′)−
δs,s′,s′′Zs

∑
s̃

Zs̃Fα,β,γ(0, ts − ts̃). (C.16)

In Eq. C.16, we have written explicitly the dependence on the atomic (s,s′,s′′) and Cartesian (α,β,γ)
indexes of the phonon patterns uq (which are defined in Eq. 2.2). In Eq. C.16, Zs is the ionic charge and
ts is the position of the atom s. The sum is performed on all the atoms of the unit cell. The function F
is

Fα,β,γ(q, t) = −4π
Ω
∑
G

[
e−(G+q)2/(4η2)

(G + q)2 ei(G+q)·t ×

i3(G + q)α(G + q)β(G + q)γ

]
+

−
∑
R
eiq·R

d3f

dxαdxβdxγ

∣∣∣∣
x=|t−R|

. (C.17)

Here, Ω is the unit-cell volume, the sums are performed on the ensemble of the reciprocal lattice vectors
G and of the real space lattice vectors R. η is the cutoff for the real space summation within the Ewald
method [165] and f(x) = erfc(ηx)/x, being x = |x|. erfc is the error function and

d3f(x)
dxαdxβdxγ

=(δαβxγ + δαγxβ + δβγxα)f1(x)

+ xαxβxγf3(x)a(ηx) (C.18)

with

f1(x) =3erfc(ηx) + a(ηx)(3 + 2x2η2)
x5 , (C.19)

f3(x) =− 15erfc(ηx) + a(ηx)(15 + 10η2x2 + 4η4x4)
x7 , (C.20)

a(ξ) = 2ξ√
π
e−ξ

2
. (C.21)

C.1.5 Gradient corrected functionals
The last term of eq. C.12 has to be generalized in the case of gradient-corrected functionals to include
the partial derivative with respect to the norm of the charge density gradient |∇rn(r)|. The explicit
expression for this derivative is several pages long, it is reported in Ref. 166.
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C.1.6 Derivatives of the external potential
C.1.6.1 Third derivative
The third right-hand term of Equation C.12 involves the third derivative of the external potential inte-
grated with the unperturbed ground-state charge. For the local part we only give the final expression, as
computed in reciprocal space on the basis of Cartesian displacements:

V
(3)
local

(
q q′ q′′

I J K
α β γ

)
= δI,JδI,K

× Ω
(

2π
a

)3∑
G

nGie
i2πG·τIGαGβGγv

G
ext (C.22)

Where the Ith ion is at position τ . We recall that the external potential is a superposition of ion-centered
ionic potentials.

As we are using non-local pseudopotentials, we have an additional term which comes from applying
the pseudopotential projectors to the wavefunctions. We start from the expression of the non-local
contribution to total energy[167]:

Enon_local =
∑
ν,µ

D̃ν,µ
∑
i,k

Wk θ̃(εik)〈ψik | pν〉〈pµ | ψik〉 (C.23)

where | pn〉 is the n-th non-local projector, and θ̃(ε) the smearing function in the metallic case. D̃ν,µ are
the non-local energy terms coming from projectors ν and µ; these indexes are global, but in practice D̃ν,µ

is non-zero only when projectors ν and µ are centered on the same ion.

Its third order derivative can be computed directly; we found convenient to implement it numerically in
reciprocal space. We define 4 integral terms, as computed in G-space:

A
(3)αβγ
ν,i,k = 〈ψik | pαβγν 〉

=
(

2π
a

)3∑
G
GαGβGγ (pν)G

(
ψik
)

G , (C.24)

A
(2)αβ
ν,i,k = 〈ψik | pαβν 〉 =

(
2π
a

)2∑
G
GαGβ (pν)G

(
ψik
)

G , (C.25)

A
(1)α
ν,i,k = 〈ψik | pαν 〉 = 2π

a

∑
G
Gα (pν)G

(
ψik
)

G , (C.26)

A
(0)
ν,i,k = 〈ψik | pν〉 =

∑
G

(pν)G
(
ψik
)

G . (C.27)

Where | pα〉 is the derivative of the Kleinman-Bylander (KB) projectors[167] along Cartesian direction
α; multiple indexes indicate multiple derivatives. We have employed the notation (ψ)G to underline that
function ψ is represented in Fourier space; (q)α indicates the Cartesian component α = x, y, z of verctor
q. With these definitions we have the contribution on the Cartesian basis:

V
(3)
non_local =− 2

∑
k
Wk

∑
i

θ̃(εikk)
∑
ν,µ

D̃ν,µ

×
(
A

(3)αβγ
ν,i,k A

(0)
µ,i,k +A

(1)α
ν,i,kA

(2)βγ
µ,i,k

+A(1)β
ν,i,kA

(2)γα
µ,i,k +A

(1)γ
ν,i,kA

(2)αβ
µ,i,k

)
(C.28)

The dependence on the ion is implicit in the indexes ν and µ.

C.1.7 Second derivative
This term is composed of a local and non-local part, similarly to the one treated in the previous section.
For the local part we only give the final expression, as computed in reciprocal space on the basis of
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Cartesian displacements:

V
(3)
local

(
q q′ q′′

I J K
α β γ

)
= −1

2

(
2π
a

)2∑
G
δI,JδI,K

(
n

(1)
q,I,α

)
G

× ei2π(q+G)·τJ (G+ q)β(G+ q)γ vG
ext . (C.29)

It’s interesting to note that q′ and q′′ never appears explicitly, but only summed together, this sum has
been replaced with −q.

We will also reuse the A(0) term from the previous section, and define these additional terms:

dqA
(0)
ν,i,k =

∑
G

(pν)G
(
dqψik

)
G (C.30)

B
(2)αβ
ν,i,k =

(
2π
a

)2∑
G

(k +G)α(k +G)β (pν)G
(
ψik
)

G , (C.31)

B
(1)α
ν,i,k = 2π

a

∑
G

(k +G)α (pν)G
(
ψik
)

G , (C.32)

dqB
(2)αβ
ν,i,k =

(
2π
a

)2∑
G

(k + q +G)α(k + q +G)β

× (pν)G
(
dqψik

)
G , (C.33)

dqB
(1)α
ν,i,k = 2π

a

∑
G

(k + q +G)α (pν)G
(
dqψik

)
G , (C.34)

(C.35)

With this notation the non-local contribution is:

V
(3)
non_local =2

∑
k
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∑
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θ̃(εikk)
∑
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qB
(2)βγ
µ,i,k

)
(C.36)

Where the first perturbation is implicit in dqψ, and the ionic indexes are implicit in µ and ν.

C.1.8 Non-linear core correction
nc(r) is the core charge. We consider nt(r) = n(r) + nc(r), where n is the valence charge. First, in the
last term in the right hand side of Eq. C.12, one has to replace the three ∂n/∂uq with the corresponding
∂nt/∂uq. Second, one has to add in the right hand side of Eq. C.12 the two terms

ˆ
δEI[n]
δn(r)

∂3nc(r)
∂uq∂uq′∂uq′′

dr +

3
ˆ

δ2EI[n]
δn(r)δn(r′)

∂2nc(r)
∂uq∂uq′

∂2nt(r′)
∂uq′′

drdr′ (C.37)

C.1.9 Variation of wavefunctions
In order to compute all the terms of equations C.12, C.13 and C.14 we need up to 12 distinct wavefunction
variation terms:

|φq1
k>,i >, |φq1

k−q1>,i
>, |φ−q1

k+q1>,i
>, |φ−q1

k>,i

|φq2
k>,i >, |φq2

k−q2>,i
>, |φ−q2

k+q2>,i
>, |φ−q2

k>,i

|φq3
k>,i >, |φq3

k−q3>,i
>, |φ−q3

k+q3>,i
>, |φ−q3

k>,i >

(C.38)
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Note that the first 2 and last 2 terms on each line are the same derivative, but they are computed on
two different grids of electronic k points. All of these wavefunction derivatives can be computed non-self
consistently for the corresponding variation of the ground state charge ∂n/∂u(q); this is done in the code
solving eq. C.7 with a conjugate-gradient (CG) algorithm. The symmetry operations in the G3S can be
used to reduce the number of electronic k points to be used for the BZ integration.

As a by-product of the CG algorithm we compute the following terms:

〈ψk−q,i | dqH | ψk,j〉 (C.39)
〈ψk,i | dqH | ψk−q,j〉, (C.40)

for every q: they are stored to be used later. We also compute additionally the terms of the form:

〈ψk−q3,i | d
q2H | ψk+q1,j〉, (C.41)

for all the 6 permutations of the q-vectors, as they are used in eq. C.13 and C.14.

In the metal case, we precompute some terms which are only used for eq. C.14:

〈φqa

k−qa,i
| dqbH | ψk−qb,j〉. (C.42)

Where qa and qb can be q,q′,q′′ or q,q′,q′′ and qa 6= qb, qa 6= −qb.

In order to save cpu time we employ every possible simplification in special cases. The first special case
is trivially q = q′ = q′′ = Γ, in this case only one wavefunction derivative is needed, only one unique
term arises from eq. C.39.

The second special case is q = Γ and q′ = −q′′ = p; in this case we need 3 derivatives, the first | φΓ
k〉

comes from the first line of eq. C.38, the second | φp
k〉 and third | φp

k−p〉 come from the first two terms
of the second line. There are more unique terms from eq. C.38 that could be computed, but they are
not needed to obtain D3. Only in the specific case for metal when at least one of the 3 points is zero, we
precompute one additional term:

〈φp
k,i | d

pH | ψk,j〉. (C.43)

In order obtain D3 using only three derivatives, we cannot compute all the 6 permutation of eq. C.11:
only 3 of them are done explicitly, the other ones are obtained by index permutation and complex
conjugate:

Ẽ
(

Γ p −p
s s′ s′′

)
=
(
Ẽ
(

Γ −p p
s s′′ s′

))?
(C.44)

And so on, pairwise, for the other terms. It is important to choose wisely the terms to compute and those
to obtain by permutation in order to use only 3 derivatives; the choice depends on the specific details
and internal conventions of the implementation but is evident in practice. Accordingly if the vanishing
vector is q′ or q′′, the same technique can be applied with only minor changes.

The last special case is q = 2p and q′ = q′′ = −p. In this case we can reduce the total number of
wavefunction derivatives to 7. We omit the details, that are quite similar to the previous case.

C.2 Third-order response calculation
A third order calculation in the “2n+1” method is performed of 4 consecutive stages.

1. a ground state self-consistent field calculation. Results: ground state density n(r) self consistent
Kohn-Sham potential V KS.

2. DFPT (phonon) calculation on a symmetry-reduced grid q points. Results: first-order variation of
the ground state density ∂n/∂uq and of the potential V q for an irreducible set of bf q points.

3. rotation of the charge density variation to a complete regular grid of q points. Results: ∂n/∂uq
on the complete regular bf q-space grid.
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4. the third-order response calculation. Results: the third-order dynamical matrix D3
q,q′,q′′ , for every

triplet q,q′,q′′.

In step 4, the | ψk〉 are computed non-self consistently from the ground state charge density n, while
| φq

k〉 are recomputed from n(r) and its perturbation δqn.

The main limits of the current implementation is that only norm-conserving pseudopotential can be used
and that only the plain local-density approximation is supported for the functional. The second and third
steps can either be performed in a single run or in two consecutive runs. The former is simpler and tidier
to run, the latter allows for a better optimisation of memory usage: Step 2 is cpu intensive while step 3
is memory and input/output intensive. The last step is performed by our the new generalized 3rd order
code.

C.2.1 Parallelism and computational cost
Each q vector of steps 2 and 3 can be computed independently, allowing for a very effective parallelisation:
provided that an illimited number of CPUs are available the total wall time is just the wall time of the
slower q point. The same holds for step 4, if we consider q point triplets instead of single points.

Apart from this trivial parallelisation, two more levels of parallelism are implemented in the code; they
correspond to the k-point pools and plane-wave parallelisation of Quantum-espresso as described in
detail in Ref. 105.

The computational cost of a single triplet calculation is of the same order of magnitude of a phonon
calculation for a q point of the same symmetry. However, the double-grid of triplets is contains many
more points than single-grid of q points, as we will see in detail in Section B.6. Consequently the
amount of CPU time required to perform the third order calculation is much larger than for the phonon
calculation. As an example, in the graphene case, The 2nd order calculation over the Nph = 10 irreducible
q points took about 15 h of CPU time to complete; the 3rd calculation includes Nd3 = 88 triplets that
were computed in 1800 h. For the calculations performed in this work, the most CPU intensive part of
the 3rd order calculation is then on-self consistent calculation of the wavefunction variations.

On the other hand, the cost of this response calculation is rarely a bottleneck, as the solution of the
Boltzmann transport equation tends to be an order of magnitude more expensive.
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Appendix D

Description of computer codes

The theory described in the previous chapters has been implemented over the course of a decade in a
series of computer codes to perform the calculations. This appendix reprises the user manual to describes
the use and parameters of the different codes and show their capabilities.

This section is adapted from the documentation of the “anharmonic” code release. The codes and the full
documentation are available at their official web page [168].

D.1 Electronic structure code
The d3q.x code computes the third derivative of the Density Functional Theory ground-state energy
with respect to three harmonic perturbations, identified by their wavevectors q1, q2 and q3 = −q1− q2.
The code can use a certain number of methods:

• Norm Conserving pseudopotentials
• Local Density Approximation (LDA) and Generalized Gradient Approximation (GGA) functionals.
• Insulators and Metals (i.e. partial occupation of the electronic bands)

On the other hand, the codes does not implements the following features:

• Ultrasoft pseudopotentials and PAW datasets
• Advanced functionals, e.g. meta-GGA, Grimme vdW corrections and non-local vdW functionals
• Hybrid functionals
• LDA+U, or self-interaction correction
• spin-polarized systems
• non-collinear spin and spin-orbit interaction

In most cases, we have have been able to obtain meaningful results despite these limitation, sometimes
combining phonons computed with more advanced methods with 3rd order calculation computed on the
same systems but with a simpler method, assuming that more advanced correction would not affect the
3rd order too much. If you want to take this approach we recommend that you validate the assumption
on a simpler test, where the entire calculation can be performed with the methods available in d3q.x.
Alternatively, you can use one of the compatible real-space codes.

The d3q.x code works in combination with the ph.x code from the Quantum ESPRESSO distribution,
which in turn has to be run on top of a total energy calculation performed with the pw.x code. As it
is impractical to store the wavefunctions and the wavefunction perturbations, the d3q.x code recom-
putes them from the ground-state charge density and its variation with respect to a harmonic phonon
perturbation.
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D.2 Utilities
d3_sqom.x
This code reads a spectral weight file from d3_lw.x and manipulates it to simulate the effect of limited
experimental resolution, from Inelastic Neutron Scattering or Inelastic X-ray Scattering.

It computes theconvolution with a Lorentzian (INS) or Pseudo-voigt (IXS) function that has an energy-
dependent (INS) or fixed (IXS) full-width-half maximum. This code can also sum and average the spectral
function coming from several different files, to simulate the uncertainty of the neutron wavevectors.

d3_q2r.x
This code is analogous to the q2r.x code of QE, and it uses the same input, but produces a file of Force
Constants (FCs) which has already been re-centered in the reciprocal space Wigner-Seitz cell to make
Fourier Interpolation faster.

In addition to the standard q2r variables, you can specify “nfar” which is the distance from the origin, in
unit cells, used to construct the first Brilloouin zone. Setting nfar to a sufficiently lareg number (i.e. 2 or
3) produces “centered” force constants, useful for Fourier interpolation. Setting nfar=0 produces standard
“periodic” force constants that can be directly compared with the ones from Quantum ESPRESSO.

d3_qq2rr.x
Analogous to q2r.x, but operates on the 3rd order matrices. This code also apply the symmetry by
permutation of the indeces, which is not completely taken into account by the d3q.x code.

d3_sparse.x
This code converts a file of third order FCs from dense form to sparse form; it can optionally discard
elements that are smaller than a custom threshold. It can also measure the speedup gained by using the
sparse FCs instead of the dense ones.

d3_asr3.x
This code applies the acoustic sum rules (ASR) to the third order FCs. It can only work on dense Fcs,
not on the sparse ones. As the sum is applied iteratively, it will automatically stop after 10,000 iterations,
or when the residual violation of the ASR is less than 10−12

d3_recenter.x
Reads force constants from mat3R.input, interpolate them on a grid of NQX × NQY × NQZ points,
recenter them on a Wigner-Seitz cell constructed up to NFAR unit cells and save the result.

Uses the properties of Fourier interpolation to convert the 3rd order force constants from a grid to another.
If the new grid is different than the initial one, some interpolation will be done, if the grid is the same,
you can use the nfar parameter to recalculate the Wigner-Seitz cell centering.

d3_import_shengbte.x
Reads the 3-body force constants produced by Mingo & Carrete code thirdorder.py [21] and import them
to internal format.

D.3 Main codes
D.3.1 d3_r2q.x
This code reads the 2nd order FCs and computes a number of different quantities that only depend on
the harmonic 2nd order force constants, it is currently evolving and should be quite easy to modify and
extend according to your needs.
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The type of calculation this code can perform are:

• “freq”: Compute the phonon frequencies.
• “jdos”: Compute the joint density of state as defined in Ref. 107.
• “rms” : Compute the root mean square displacement of the atoms around their equilibrium posi-

tions in the harmonic hamiltonian at a given temperature.
• “fh”: Compute the phonon free energy or, for T=0, the zero-point energy.

D.3.2 d3_qha.x
This code is an implementation of the well known Quasi Harmonic Approximation method to find crystals
equilibrium volume at finite temperature, and thermal expansion.

It reads the 2nd order FCs for a series of volumes and computes the phonon free energy for a given
list of temperature, optionally adding a pV (pressure × volume) hydrostatic term. It then fits the total
free energy with an equation of state to find the equilibrium volume at each temperature, and find the
temperature/volume curve and the volumetric thermal expansion coefficient.

Optionally one can add an hydrostatic pressure, which will contribute a simple -pV term to the total
energy.

Kind of equation of state to use:

1. Murnaghan
2. Birch 1st order
3. Birch 3rd order
4. Keane

Note that these EOS are empirically suitable for V-P (volume-pressure) curves, not for V-T. In practice
they work remarkably well in all the cases we have tested.

D.3.3 d3_lw.x
This code can compute the intrinsic phonon-phonon interaction and the interaction of phonons with
isotopic disorder and border scattering at any q-point.

The quantities to compute that are currently implemented:

• “lw imag”: compute the imaginary part of the self-energy, i.e. the phonon linewidth. In this mode
the code will enforce conservation of energy with a Diract delta function approximated with a
Gaussian function of width delta, read from input.

• “lw full”: compute the entire self energy, the real part is the lineshift and the imaginary part is the
linewidth. In this case the value of delta will be used as a regularization for the self-energy.

• “spf full”: compute the spectra function, also known as σ(ω), for a list of energies and of q-points.
• “spf imag”: as “spf full”, but only the imaginary part of the self-energy will be used, i.e. the

spectra function will be centered around the non-shifted phonon energy. This is often in better
agreement with experiments than “spf full”, unless you also include somehow the 4-phonons self-
energy contribution, because the real part of the 3-phonon term and the 4-phonon terms tend to
cancel each other out.

• “spf simple”: simulate the spectral function as a superposition of Lorentzian functions centered
around the phonon frequencies and appropriate width. This is a good approximation to “spf full”
when the anharmonicity is very weak.

• “final”: decompose the contribution to the linewidth at a specific energy and q-point (specified in
input) over the energy of the final states involved in the scattering process or over the final q, or
both.

This code can also take into account scattering from isotopic disorder. A table of natural occuring
isotopes is included in the code, or can be specified by hand. It is also possible to include scattering with
boundary, treated with the Casimir formula. Isotopes and Casimir scattering is only applied to linewidth
calculation, it has no effect on spectral function and final state calculations.
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D.3.4 d3_tk.x
The d3_tk.x code can compute the thermal conductivity coefficient in the SMA or by exact diagonal-
ization of the BTE. I uses the same routines for computing the phonon lifetime as the d3_lw.x code and
has the same capabilities for including extrinsic effects (isotopes, boundaries).

The “cgp” algorithm will also output the SMA thermal conductivity at its first iteration, but computed
in a slightly different way which is slower but guarantees the phonon-phonon scattering matrix to be well
defined and the functional to be minimized to be positive definite.

When doing a “sma” calculation, the phonon lifetime has to be computed, for each k-point in a. Each
lifetime calculation is itself an integral over a

inner k-points grid. In principle, there is no reason for the two grids to be identical, as one quantity could
be harder to converge than the other. When doing a CGP calculation, the inner and outer grids must
be identical, as the algorithm diagonalizes a matrix A which contains the scattering probability of every
phonon with any other, this contributes to the increased computational cost of the CGP method.

D.3.5 d3_tdph.x
This code implements the TDEP method. It reads a set of initial dynamical matrices for a given system
and optimizes the harmonic force constants over a series of images that can be the output of a molecular
dynamics calculation performed with Quantum ESPRESSO, or of a Langevin Dynamics calculation from
the PIOUD code. The code will expect that the simulation supercell is the same for the force constants
and the dynamics simulations.

When building the basis of symmetric dynamical matrices, ouse one of these initial guesses:

• “simple” orthogonal matrices hermitean matrices with a single diagonal or two non-diagonal non-
zero elements

• “mu” from the eignevectors of the original dynamical matrices, from file_mat2, discard the acoustic
modes at q = 0.

• “random” start from random matrices (rarely works because of accidental degeneracies)

When minimizing the phonon parameters, use one of these methods:

• “ph” only minimize the phonon degrees of freedom

• “ph+zstar” first minimize the phonons, then the effective charges degrees of freedom. It gives rarely
any improvement over “ph” because the efefctive charges do not depend strongly on temperature.

• “global” minimize all degrees of freedom simultaneously, this method can (and often does) produce
unphysical solution if the supercell is not huge.

D.4 Experimental codes:
d3_db.x
Uses the ansatz of Ref. 169 to apply the anharmonic correction directly to the dynamical matrix (instead
of perturbing just the phonon energy). Can be used to obtain 3rd-order corrected matrices that can be
interpolated using standard techniques.
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